从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化 神经网络在训练过程中,为应对过拟合问题,可以采用正则化方法(regularization),一种常用的正则化方法是L2正则化. 神经网络中L2正则化的定义形式如下: \[ J(W,b)=\frac{1}{m}\sum_{i=1}^{m}l(y^{(i)},\hat y^{(i)})+\frac{\lambda}{2m}\sum_{i=1}^{m}||W^{(i)}||_F^2\] 其中,J(W,b)为正则化下的cost functio…