1 $\bbR^n$ 中集合 $E$ 称为可测的 (measurable), 如果 $$\bee\label{3.2:Caratheodory} m^*T=m^*(T\cap E)+m^*(T\cap E^c),\quad \forall\ T\subset \bbR^n. \eee$$ (1) 所有可测集构成的集族记为 $\scrM$. (2) 这里的 $T$ 称为试验集 (test set). (3) \eqref{3.2:Caratheodory} 称为 Caratheodory 条件.…
1 记号 (notations) (1) 广义实数: $\overline{\bbR}=\bbR\cup\sed{-\infty}\cup\sed{+\infty}$. (2) 本章主要考虑     $$\bex     f:E\to \overline{\bbR},     \eex$$ 其中 $E$ 是可测集, 而把     $$\bex     f:E\to \bbR     \eex$$ 称为有限函数. 注意: 有限函数.有界函数的区别. (3)     $$\bex     E[f>c…
1 设        $$\bex        \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0,        \eex$$ 其中        $$\bex        E_i\mbox{ 可测},\quad E_i\mbox{ 两两不交},\quad E=\cup_{i=1}^j E_i,        \eex$$ 则定义        $$\bex        \int_E \phi(x)\rd x=\sum_{i=1}^…
本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集.       1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分        $$\bex        \int_E f(x)\rd x        =\sup\sed{\int_E\phi(x)\rd x; 0\leq \phi\leq f}.        \eex$$ (2) $f$ 在 $E$ 上 Lebesgue 可积 $\dps{\lra \int_Ef…
1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed{(x,y);x\in A, y\in B} \eex$$ 称为 $A$ 与 $B$ 的直积 (direct product). (2)(从高到低) 设 $E\subset \bbR^{p+q}$, $x\in \bbR^p$, 则称 $$\bex E_x=\sed{y\in\bbR^q;(x,y)…
1 回忆:    $$\bex    \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbox{ 有 }|a_n-a|<\ve.    \eex$$ $\bbR$ 中有 ``距离'' (可以衡量两数的接近程度, 这里是绝对值) 的概念. 2 拓广: 设 $X$ 是一个集合, $d:X\times X\to [0,\infty)$ 满足 (1) 正定性 (positivity): $d(x,y)…
设 $E\subset \bbR^n, P_0\in \bbR^n$. 1 若 $\exists\ U(P_0)\subset E$, 则称 $P_0$ 为 $E$ 的内点 (interior point); $E$ 的全体内点所成集合称为 $E$ 的开核, 记作 $E^o$. 2 若 $\exists\ U(P_0)\subset E^c$, 则称 $P_0$ 为 $E$ 的外点 (exterior point). 3 若 $$\bex\forall\ U(P_0),\ U(P_0)\cap…
1        $$\beex \bea E\mbox{ 是开集}&\lra E^o=E\\        &\lra \forall\ P_0\in E,\ \exists\ U(P_0)\subset E.        \eea        \eeex$$ 2        $$\beex \bea E\mbox{ 是闭集}&\lra    E'\subset E\\    &\lra E^-=E\\    &\lra \mbox{若 }E\ni P_n\…
1 Cantor 三分集的构造:                $$\bex P=\cap_{n=1}^\infty F_n.                   \eex$$ 2 Cantor 三分集的性质 (1) $P$ 是完备集. (2) $P$ 没有内点:                    $$\bex     x\in P\ra \forall\ n, x\in F_n\ra                    U\sex{x,3^{-n}}\not\subset F.    …
1 并不是所有的集合都可求测度. 我们的想法是先对 $\bbR^n$ 中的任一集合定义一个``外 测度'' (outer measure), 然后再加上适当的条件 (Caratheodory 条件), 使 `` 外测度''  变为``测度'' (measure). 2 对 $E\subset \bbR^n$,  定义 $E$ 的外测度                $$\bex m^*E=\inf\sed{\sum_{n=1}^\infty |I_i|; E\subset \cup_{n=1}^…