Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系列函数来自动搜索深度学习模型的网络和超参数. 安装: pip install autokeras 样例: import autokeras as ak clf = ak.ImageClassifier() clf.fit(x_train, y_train) results = clf.predict…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
深度学习模型的调优,首先需要对各方面进行评估,主要包括定义函数.模型在训练集和测试集拟合效果.交叉验证.激活函数和优化算法的选择等. 那如何对我们自己的模型进行判断呢?——通过模型训练跑代码,我们可以分别从训练集和测试集上看到这个模型造成的损失大小(loss),还有它的精确率(accuracy). 目录 前言 1.定义模型函数 2.交叉验证(Cross-validation) 3.优化算法 4.激活函数(activation) 5.dropout 6.early stopping 模型训练实战案…
arcpy地理处理工具案例教程-生成范围-自动画框-深度学习样本提取-人工智能-AI 商务合作,科技咨询,版权转让:向日葵,135-4855_4328,xiexiaokui#qq.com 目的:对面.线图层,创建范围多边形要素类. 优点:除了系统字段,所有字段内容均保留. 用途:制图综合,数据处理.深度学习样本自动提取. 工具名称:replaceExtentForShape 效果:   商务合作,科技咨询,版权转让:向日葵,135-4855__4328,xiexiaokui#qq.com…
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素. 例子:Hulu的奢侈品广告主希望把广告定向投放给奢侈品用户.Hulu通过第三方的数据管理平台拿到了一部分奢侈品用户的数据,并以此为训练集和测试集,训练和测试奢侈品用户的分类模型,该模型的分类准确率超过了95%,但在实际广告…
变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以探索声音.音乐甚至文本的潜在空间: VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;  GAN生成的图像可能非常逼真,但它的潜在空间可能没有良好结构,也没有足够的连续型.   自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程. 原来有很多 Feature,…
定义模型两种方法:  1.sequential 类仅用于层的线性堆叠,这是目前最常用的网络架构 2.函数式API,用于层组成的有向无环图,让你可以构建任意形式的架构 from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(32,activation='relu',input_shape=(784,))) model.add(layers.Dense(1…
matlab没有直接调用tensorflow模型的接口,但是有调用keras模型的接口,而keras又是tensorflow的高级封装版本,所以就研究一下这个……可以将model-based方法和learning-based方法结合,产生很多更有趣的应用. 我的电脑配置参考前一篇博客,总之就是window下,tensorflow-GPU,有显卡,python 3.5. (配置:https://blog.csdn.net/vera__zhang/article/details/78531550)…
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/ Overview In this post I want to show you both how you can use the scikit-learn grid search capability and give you a suite of examples that you can copy…
生成式对抗网络(GAN,generative adversarial network)由Goodfellow等人于2014年提出,它可以替代VAE来学习图像的潜在空间.它能够迫使生成图像与真实图像在统计上几乎无法区别,从而生成相当逼真的合成图像. 1.GAN是什么? 简单来说就是由两部分组成,生成器generator网络和判别器discriminator网络.一部分不断进化,使其对立部分也不断进化,实现共同进化的过程. 对GAN的一种直观理解是,想象我们想要试图生成一个二次元头像.一开始,我们并…