[模板][P3803]多项式乘法】的更多相关文章

Description: FFT真的容易忘,所以就放到上面来了 #include<bits/stdc++.h> using namespace std; const int mxn=4e6+5; const double PI=acos(-1); int n,m,l,lim=1,r[mxn]; struct cp { double x,y; cp(double xx=0,double yy=0) {x=xx,y=yy;} friend cp operator + (cp a,cp b) { r…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 复制 1 2 1 2 1 2 1 输出样例#1: 复制 1…
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) 的卷积. 思路 FFT 又是一道 \(FFT\) 的模板题,不过用递归的 \(FFT\) 会超时. 代码 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1); typedef complex<dou…
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A(x)=a_1x^k+a_2x^{k-1}+...+a_k\) 或者可以这样表示: \(A(x)=\sum\limits_{i=1}^{k}a_i\times x_i\) 那你很容易看到,用来做这道题用系数表示法来做是 \(O(n^2)\) 的. 点值表示法 假设我们已经知道了这个多项式,那我们把…
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.net/leo_h1104/article/details/51615710 题解 不写点什么也不好,我就简单的说一下吧. 我们首先得知道DFT(离散傅里叶变换)和IDFT(逆离散傅里叶变换). 一个多项式有很两种表示方法: 法一:\(f(x)=\sum_{i=0}^n A_i*x^i\) 法二:图像…
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 1 2 1 2 1 2 1 输出样例#1: 1 4 5 2 说明 保证输入中的系数大于等于 0 且小于等于9.…
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O(n^2)\). \(FFT\)算法基本思想是把系数表达式转换成点值表达式,求出卷积的点值表达式,再转换回系数表达式. 何为点值表达式? 把多项式看成一个函数,比如\(n\)次多项式\(F\)可以看成一个\(n\)次函数\(F(x)=a_0+a_1x+a_2x^2+\cdots +a_nx^n\) 众…
新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_n=\sum\limits_{i=0}^n A_iB_{n-i} \] 基本思路为先将系数表达 -> 点值表达 \(O(nlogn)\) 随后点值 \(O(n)\) 进行乘法运算 最后将点值表达 -> 系数表达 \(O(nlogn)\) 代码 #include<cstdio> #inc…
https://www.luogu.org/problemnew/show/P3803 看别人偏偏就是要用NTT去过.实验证明大概是这样用.求0~n的多项式和0~m的多项式的乘积.注意MAXN取值.A数组的大小必须足以容纳大于等于A+B总size的最小的2的幂次.干脆就直接取4倍? #include <bits/stdc++.h> using namespace std; typedef long long ll; const int MAXN = 4e6, mod = 998244353;…
传送门 fft模板题. 终于学会fft了. 这个方法真是神奇! 经过试验发现手写的complex快得多啊! 代码: #include<iostream> #include<cstdio> #include<cmath> #define N 10000005 using namespace std; inline int read(){ int ans=0,w=1; char ch=getchar(); while(!isdigit(ch)){if(ch=='-')w=-…
题目大意:$FFT$,给你两个多项式,请输出乘起来后的多项式. 题解:$FFT$,由于给的$n$不是很大,也可以用$NTT$做 卡点:无 C++ Code:  FFT: #include <cstdio> #include <cmath> using namespace std; const double Pi = acos(-1); int n, m; struct complex { double r, i; complex (double a = 0, double b =…
题目 这是一道FFT模板题 输入格式 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输出格式 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输入样例 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输出样例 1 2 1 2 1 2 1 提示 1 4 5 2 题解 表示迭代还不是很懂 只好背模板... #include<iostream> #incl…
https://www.luogu.org/problemnew/show/P3803 用反向学习的FFT通过这个东西. #include <bits/stdc++.h> using namespace std; typedef long long ll; const int MAXN = 3e5; const double PI = acos(-1.0); struct Complex { double x, y; Complex() {} Complex(double x, double…
传送门: 参考博客 1:大佬  attack 参考博客 2:大佬  胡小兔 在这里再膜拜一下这两位大佬 Orz%%% #include<iostream> #include<cstdio> #include<cmath> using namespace std; #define ll long long #define re register #define pb push_back #define mp make_pair #define P pair<int,…
传送门 NTT好像是比FFT快了不少 然而感觉不是很看得懂……主要是点值转化为系数表示那里…… upd:大概已经搞明白是个什么玩意儿了……吧…… //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i) #define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i) #define go(u) for(int…
题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 1 2 1 2 1 2 1 输出样例#1: 1 4 5 2 说明 保证输入中的系数大于等于 0 且小于…
题目:https://www.luogu.org/problemnew/show/P3803 第一道FFT! https://www.cnblogs.com/zwfymqz/p/8244902.html http://www.cnblogs.com/RabbitHu/p/FFT.html 就是把系数转化为2*n个点值,点值相乘一下,再转化回2*n个系数的过程. 转化为点值的过程就是倍增一样,第一步是w_{1,0},也就是说x都是1,所以一开始2*n个位置上的点值都是原来的系数:然后变成两个一组取…
题目:https://www.luogu.org/problemnew/show/P3803 终于学了FFT了! 参考博客:https://www.cnblogs.com/zwfymqz/p/8244902.html http://www.cnblogs.com/RabbitHu/p/FFT.html 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm>…
题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. #include<bits/stdc++.h> using namespace std; const int MAXN=3000100; const double…
相对来说是封装好的,可以当模板来用. #include <bits/stdc++.h> #define maxn 5000000 #define G 3 #define ll long long #define P 998244352 #define MOD 998244353 #define setIO(s) freopen(s".in","r",stdin) using namespace std; namespace FTT{ int rev[ma…
传送门 FFT #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(a):(b)) #define min(a,b) ((a)<(b)?(a):(b)) inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch&g…
为什么我这么弱 其实FFT也挺水的,一点数学基础加上细心即可.细节·技巧挺多. 递归 在TLE的边缘苦苦挣扎 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define R(a,b,c) for(register int a = (b); a <= (c); ++ a) #define nR(a,…
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多项式为\(A(x)=\sum_{i=0}^{n}a_ix^i,B(x)=\sum_{i=0}^{m}b_ix^i\) Prerequisite knowledge: 初中数学知识(手动滑稽) 最简单的多项式方法就是逐项相乘再合并同类项,写成公式: 若\(C(x)=A(x)B(x)\),那么\(C(x…
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DFT(v_2)$.这里得到的 $f_1$ 和 $f_2$ 分别是两个输入多项式在 $2n$ 次单位根处的各个取值(即点值表示) 3.乘法:把两个向量 $f_1$ 和 $f_2$ 的每一维对应相乘,得到向量 $f$.它对应输入多项式乘积的点值表示. 4.插值:用FFT计算 $v=IDFT(f)$,其实…
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多项式的 0 到 n 次项前的系数. 第三行 m+1 个整数,分别表示第一个多项式的 0 到 m 次项前的系数. 输出 一行 n+m+1 个整数,分别表示乘起来后的多项式的 0 到 n+m 次项前的系数. 输入示例 输出示例 数据规模及约定 0≤n,m≤105,保证输入中的系数大于等于 0 且小于等于…
卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项式,系数为,设最高非零系数为,则其次数就是,记作.任何大于的整数都是的次数界. 多项式的系数表达方式:(次数界为). 则多项式的系数向量即为. 多项式的点值表达方式:,其中各不相同,. 离散傅里叶变换(DFT) 离散傅里叶变换(Discrete Fourier Transform,DFT).在信号处…
基础 很久以前的多项式总结 现在的码风又变了... FFT和NTT的板子 typedef complex<double> C; const double PI=acos(-1); void FFT(C*a,R op){ for(R i=0;i<N;++i) if(i<r[i])swap(a[i],a[r[i]]); for(R i=1;i<N;i<<=1){ C wn=C(cos(PI/i),sin(PI/i)*op),w=1,t; for(R j=0;j<…
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b_0x^0+b_1x^1+b_2x^2+...b_ix^i+...+b_{m-1}x^{m-1}$ 则 $C=c_0x^0+c_1x^1+c_2x^2+...c_ix^i+...+c_{m+n-2}x^{m+n-2}$ 其中 $$c_k=\sum_{i+j=k}^{i<n,j<m}a[i]b[j]…