Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)=p^k \times \frac{p-1}{p},k>0\\ \varphi(ab)=\varphi(a)\varphi(b),gcd(a,b)=1\\ \dots \] 有上面三个就够了. 要求 \[ \varphi(\prod a_i) \] 可以考虑把\(\prod a_i\)拆成 \[ \p…
题目大意:给你一个序列,求出指定区间的(l<=i<=r) mod 1000777 的值 还复习了欧拉函数以及线性筛逆元 考虑欧拉函数的的性质,(l<=i<=r),等价于 (p[j]是区间内所有出现过的质数) 那么考虑找出区间内所有出现过的质数,这思路和HH的项链是不是很像?? 由于此题强制在线,所以把树状数组替换成了主席树而已 原来我以前写的主席树一直都是错的......还好推出了我原来错误代码的反例 在继承上一个树的信息时,注意不要破坏现在的树 #include <cstd…
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\(\sum_{i=l}^r a_i(i-l+1)^k \mod 10^9+7\) \(n,m \leq 10^5,k \leq 5\) 分析 根据二项式定理 \[(i-l+1)^k=\sum_{j=0}^k (-1)^{k-j} C_{k}^j i^j(l-1)^{k-j}\] 那么 \(\begi…
Please, another Queries on Array? 利用欧拉函数的计算方法, 用线段树搞一搞就好啦. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, i…
比赛时,第二题就是做的这个,当时果断没仔细考虑,直接用线段树暴力求.结果易想而知,超时了. 比赛后搜了搜题解,恍然大悟. 思路:显然用线段树,但是由于每次查询都会有变,所以不可能存储题目中的式子.   这里要注意:k的值非常小,所以应该是将式子按二项式定理展开   (i-L+1)^k=(i+(1-L))^k   展开之后可以发现:我们可以在节点存储ai*i,ai*i^2,ai*i^3,ai*i^4,ai*i^5 (L<=i<=R)的累加和.   至于关于(1-L)^j(j=0~5)可以预先枚举…
题目链接: Codeforces266E 题目大意:给出一个序列$a$,要求完成$Q$次操作,操作分为两种:1.$l,r,x$,将$[l,r]$的数都变为$x$.2.$l,r,k$,求$\sum\limits_{i=l}^{r}a_{i}(i-l+1)^k$,其中$k\le 5$. 因为$k$比较小,对于序列的每个位置,维护出$a_{i}*i^{k}$的值,并用线段树维护区间和.因为存在区间赋值操作,我们再维护$f[i][j]$表示$\sum\limits_{x=1}^{i}x^j$(即$j$次…
\(tag\)没开够\(WA\)了一发... 求出\(dfs\)序,然后按深度分类更新与查询. #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define R(a,b,c) for(register int a = (b); a <= (c); ++ a) #define nR(a,b,c) fo…
这题我在考场上也是想出了正解的……但是没调出来. 题目链接:CF原网 题目大意:给一个长度为 $n$ 的序列 $a$,$q$ 个操作:区间乘 $x$,求区间乘积的欧拉函数模 $10^9+7$ 的值. $1\le n\le 4\times 10^5,1\le q\le 2\times 10^5,1\le a_i,x\le 300$.时限 5.5s,空限 256MB. 明显线段树. 有一个想法是维护区间积的欧拉函数,但是这样时间复杂度和代码复杂度都很高…… 我的做法是维护区间积.而欧拉函数,就是看看…
题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ \begin{aligned} \phi(x)&=\phi(\prod\limits_{i=1}^{n}p_i^{c_i})&\\ &=\prod\limits_{i=1}^{n}\phi(p_i^{c_i})&\\ &=\prod\limits_{i=1}^{n}p_…
CF1114F Please, another Queries on Array? 考虑用线段树维护取模后的区间积和真正的区间积所含有的质因子. 每次询问查得这两个值后,一乘一除,即可算出该区间积的欧拉函数. 区间积容易维护,主要考虑如何维护所含的质因子. 注意到 \(a_i\) 和每次乘的 \(x\) 都 \(\leq 300\) , 而 \(300\) 以内的质数恰有 \(62\) 个,所以可以用一个 \(62\) 位的非负整数状压表示一个区间所含的质因子,用 \(long\ long\)…