「SDOI2016」储能表(数位dp)】的更多相关文章

「SDOI2016」储能表(数位dp) 神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\) \(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 \(m\) 是否到达上界 \(k\) 是否到达下界.我用一个 \(pair\) 存,\(first\) 记录方案数,\(second\) 记录所有的和. \(ans=(P.S-k*P.F)\%mod\) 那么我们每次枚举该位为 \(0/1\) 就可以转移了,逐位计算贡献. \(Code\ Belo…
ref ref 一个点就是一个数对 \((x,y)\). 记状态 \(f[i][1/0][1/0][1/0]\) 和 \(g[i][1/0][1/0][1/0]\),其中三个 \(1/0\) 取值分别代表"\(x\) 在前 \(i\) 位卡满 \(n\)(的前 \(i\) 位)/小于它"."\(y\) 在前 \(i\) 位卡满 \(m\)(的前 \(i\) 位)/小于它"."\(k_{current}\) 在前 \(i\) 位卡满 \(k\)(的前 \(i…
4513: [Sdoi2016]储能表 题意:求\[ \sum_{i=0}^{n-1}\sum_{j=0}^{m-1} max((i\oplus j)-k,0) \] 写出来好开心啊...虽然思路不完全是自己的但代码是按照自己的想法用记忆化搜索写的啊 小于k的直接不用考虑 考虑二进制上数位DP,从高到低考虑每一位 \(n,m,k\)变成了三条天际线,小于等于\(n,m\)并且大于等于\(k\) \(f[i][s1][s2][s3]\)表示第i位三条天际线状态s1s2s3时满足条件的方案数和异或和…
[BZOJ4513][Sdoi2016]储能表 Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 j 列的格子储存着 (i xor j) 点能量.所以,整个表格储存的总能量是, 随着时间的推移,格子中的能量会渐渐减少.一个时间单位,每个格子中的能量都会减少 1.显然,一个格子的能量减少到 0 之后就不会再减少了. 也就是说,k 个时间单位后,整个表格储存的总能量是, 给出一个表格,求 k 个时间…
BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0}^mi\ \mathbb{xor}\ j\).这个数据范围考虑数位DP.(其实统计一下\(\leq n\)和\(\leq m\)中每位为\(1\)的数有多少个就行了...) 如果你做过字节跳动冬令营网络赛 D.The Easiest One(没做过也行),就可以想到枚举每一位的时候,同时枚举\(x,…
挺隐蔽的数位DP.少见 其实减到0不减了挺难处理.....然后就懵了. 其实换个思路: xor小于k的哪些都没了, 只要留下(i^j)大于等于k的那些数的和以及个数, 和-个数*k就是答案 数位DP即可 f[i][0/1][0/1][0/1]表示,前i位,对n,m,k有无限制<=n,<=m,>=k?,xor值的总和 g[i][0/1][0/1][0/1]表示,前i位,对n,m,k有无限制<=n,<=m,>=k?,合法的方案数 然后枚举这一位的n,m数位填什么转移 注意爆…
国际惯例的题面: 听说这题的正解是找什么规律,数位DP是暴力......好的,我就写暴力了QAQ.我们令f[i][la][lb][lc]表示二进制从高到低考虑位数为i(最低位为1),是否顶n上界,是否顶m上界,是否顶k下界的数字和,g[i][la][lb][lc]表示(同上定义)的数字个数.转移的话,先计算出这一位n,m,k的限制,然后枚举这一位第一个数和第二个数填什么,判定xor和是否满足k的条件,转移即可.记忆化搜索实现较为简单.注意最后计算答案的时候,方案数乘以k可能爆long long,…
题意 题目链接 Sol 一点思路都没有,只会暴力,没想到标算是数位dp??Orz 首先答案可以分成两部分来统计 设 \[ f_{i,j}= \begin{aligned} i\oplus j &\left( i\oplus j >k\right) \\ 0 &\left( i\oplus j <=k\right) \end{aligned} \] 那么我们要求的就是 \[\sum_{i=0}^{n - 1} \sum_{j = 0}^{m - 1} f(i, j) - k *…
题目大意 求 \[\sum_{i = 0}^{n-1}\sum_{j=0}^{m-1} max((i\ xor\ j)\ -\ k,\ 0)\ mod\ p\] 题解 首先,开始并没有看出来这是数位dp. 后来发现可以一位一位的处理,每一位可以从前一位推出,所以可以考虑数位dp. 我们把要统计的数变为二进制表示,先考虑n位二进制的数,再考虑n-1位的数--,加起来就好辣. 定义f[i][1/0][1/0][1/0]为已经考虑到了第i位,第i位是否比n(第i位)小,第i位是否比m小,是否比k小的总…
问题描述 LG2602 BZOJ1833 题解 数位\(\mathrm{DP}\)板子题. 注意限制位数.前导零. \([a,b]=[1,b]-[1,a-1]\) \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; #define int long long template <typename Tp> void read(Tp &x){ x=0;char ch=1;int fh; while(ch!…