「算法笔记」旋转 Treap】的更多相关文章

一.引入 随机数据中,BST 一次操作的期望复杂度为 \(\mathcal{O}(\log n)\). 然而,BST 很容易退化,例如在 BST 中一次插入一个有序序列,将会得到一条链,平均每次操作的复杂度为 \(\mathcal{O}(n)\).我们称这种左右子树大小相差很大的 BST 是"不平衡"的. 有很多方法可以维持 BST 的平衡,从而产生了各种平衡树. Treap 就是常见平衡树中的一种. 二.简介 满足 BST 性质且中序遍历为相同序列的二叉查找树是不唯一的.这些二叉查找…
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transform,简称 NTT)在 FFT 的基础上,优化了常数及误差. NTT 其实就是把 FFT 中的单位根换成了原根. NTT 解决的是多项式乘法带模数的情况,可以说有些受模数的限制,多项式系数应为整数. 二.原根 与 NTT 「算法笔记」基础数论 2 中提及了原根的部分内容. 对于质数 \(p\),若…
一.树形 DP 基础 又是一篇鸽了好久的文章--以下面这道题为例,介绍一下树形 DP 的一般过程. POJ 2342 Anniversary party 题目大意:有一家公司要举行一个聚会,一共有 \(n\) 个员工,其中上下级的关系通过树形给出.每个人都不想与自己的直接上级同时参加聚会.每个员工都有一个欢乐度,举办聚会的你需要确定邀请的员工集合,使得它们的欢乐度之和最大,并且没有一个受邀的员工需要与他的直接上级共同参加聚会.\(n\leq 6000\). Solution: 考虑一个子树往上转…
一.定义 k-SAT(Satisfiability)问题的形式如下: 有 \(n\) 个 01 变量 \(x_1,x_2,\cdots,x_n\),另有 \(m\) 个变量取值需要满足的限制. 每个限制是一个 \(k\) 元组 \((x_{p_1},x_{p_2},\cdots,x_{p_k})\),满足 \(x_{p_1}\oplus x_{p_2}\oplus\cdots\oplus x_{p_k}=a\).其中 \(a\) 为 \(0\) 或 \(1\),\(\oplus\) 是某种二元…
一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S,\cdot)\) 满足一下性质: 封闭性:\(\forall a,b\in S,a\cdot b\in S\). 结合律:\(\forall a,b,c\in S,(a\cdot b)\cdot c=a\cdot (b\cdot c)\). 单位元:\(\exists e\in S,\forall…
一.简介 Splay(伸展树)是平衡树中的一种.它通过不断将某个节点旋转到根节点的位置,使整棵树仍满足 BST 的性质,并且保持平衡而不至于退化为链. 频繁访问的节点会被移动到离根节点较近的位置,进而获得更快的访问速度. 可以通过均摊复杂度证明,\(n\) 个点,进行 \(m\) 次 Splay 操作,最终的时间复杂度是 \(\mathcal{O}((n+m)\log n)\).证明. 二.基本操作 一些维护的信息: \(rt\) \(tot\) \(fa(x)\) \(lc(x)\) \(rc…
FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不懂,而且它能完成Treap与Splay能完成的所有事,代码短,理解也容易. 基本操作 FHQ Treap和Treap很像,都是给每个节点一个随机的权值,使它满足堆的性质.建议先了解Treap(没必要实现,懂得原理即可).不过,如果有两个节点值相同,FHQ Treap不会用一个数组cnt记录个数,而是…
右转→https://www.cnblogs.com/mytqwqq/p/15057231.html 下面放个板子 (禁止莱莱白嫖板子) P3369 [模板]普通平衡树 #include<bits/stdc++.h> using namespace std; const int N=1e5+5; int n,op,x; struct Treap{ int rt,tot,lc[N],rc[N],val[N],sz[N],rnd[N]; void upd(int x){ sz[x]=sz[lc[x…
一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个多项式是由其系数确定的. 可以证明,\(n+1\) 个点可以唯一确定一个 \(n\) 次多项式.对于 \(f(x)\),代入 \(n+1\) 个不同的 \(x\),得到 \(n+1\) 个不同的 \(y\).一个 \(n\) 次的多项式就可以等价地换成 \(n+1\) 个等式,相当于平面上的 \(n+1\)…
一.简介 Link-Cut Tree (简称 LCT) 是一种用来维护动态森林连通性的数据结构,适用于动态树问题. 类比树剖,树剖是通过静态地把一棵树剖成若干条链然后用一种支持区间操作的数据结构维护,而 LCT 则是动态地去处理这个问题.这里引入实链剖分. 实链剖分: 与重链剖分类似,同样将与某一个儿子的连边划分为 实边,其余儿子的连边为 虚边. 对于一个点连向它儿子的所有边,选择⼀条边为实边,其他边为虚边.虚实之间是可以进行 转换 的.对于⼀条由实边组成的链,我们称之为 实链. 每个节点能且仅…