逻辑回归2-scikit-learn参数介绍】的更多相关文章

1.1     scikit-learn参数介绍 1.1.1  导入 from sklearn.linear_model import LogisticRegression 1.1.2  版本 scikit-learn==0.21.3 1.1.3  参数 1.1.3.1 penalty l1.l2.elasticnet.none,默认l2 l1: l1正则,邻回归 l2: l2正则,套索回归 elasticnet: 弹性网络,是邻回归和套索回归的正则项的混合 none: 什么都不加 在调参时如果…
来自:刘建平 1.概述 在scikit-learn中,与逻辑回归有关的主要有3个类.LogisticRegression, LogisticRegressionCV 和 logistic_regression_path.其中LogisticRegression 和 LogisticRegressionCV的主要区别是LogisticRegressionCV使用了交叉验证来选择正则化系数C.而LogisticRegression需要自己每次指定一个正则化系数.除了交叉验证,以及选择正则化系数C以外…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 参考资料 https://www.cnblogs.com/webRobot/p/9034079.html 逻辑回归重点: 1.sigmoid函数(…
我们知道感知器算法对于不能完全线性分割的数据是无能为力的,在这一篇将会介绍另一种非常有效的二分类模型--逻辑回归.在分类任务中,它被广泛使用 逻辑回归是一个分类模型,在实现之前我们先介绍几个概念: 几率(odds ratio): \[ \frac {p}{(1-p)} \] 其中p表示样本为正例的概率,当然是我们来定义正例是什么,比如我们要预测某种疾病的发生概率,那么我们将患病的样本记为正例,不患病的样本记为负例.为了解释清楚逻辑回归的原理,我们先介绍几个概念. 我们定义对数几率函数(logit…
LR算法作为一种比较经典的分类算法,在实际应用和面试中经常受到青睐,虽然在理论方面不是特别复杂,但LR所牵涉的知识点还是比较多的,同时与概率生成模型.神经网络都有着一定的联系,本节就针对这一算法及其所涉及的知识进行详细的回顾. LogisticRegression 0.前言 LR是一种经典的成熟算法,在理论方面比较简单,很多资料也有详细的解释和推导,但回过头再看LR算法会有很多全新的认识,本节就从LR的引入到原理推导以及其与神经网络的有何联系串联起来,可以加深对这方面知识的理解.本节首先从概率生…
之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结.这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结.重点讲述调参中要注意的事项. 1. 概述 在scikit-learn中,与逻辑回归有关的主要是这3个类.LogisticRegression, LogisticRegressionCV 和logistic_regression_path.其中LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressio…
1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值.我们会使用逻辑回归算法来解决分类问题. 之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题.类似的例子还有很多,例如一个在线交易网站判断一次交易是否带有欺诈性(有些人可以使用偷来的信用卡,你懂的).再如,之前判断一个肿瘤是良性的还是恶性的,也是一个分类问题. 在以上的这些例子中,我们想预测的是一个二值的变量,或者为0,或者为1:或者…
[方法转]http://www.powerxing.com/logistic-regression-in-python/ http://blog.csdn.net/lipengcn/article/details/49592221 机器学习公开课:http://www.cnblogs.com/python27/p/MachineLearningWeek03.html 逻辑回归梯度下降法详解:http://blog.csdn.net/lookqlp/article/details/51161640…
方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class=…
一.逻辑回归简述: 回顾线性回归算法,对于给定的一些n维特征(x1,x2,x3,......xn),我们想通过对这些特征进行加权求和汇总的方法来描绘出事物的最终运算结果.从而衍生出我们线性回归的计算公式: 向量化表达式: 这一系列W值(w1,w2,w3....wn)和截距b就是拟合了我们这些特征对应于结果f(x)的线性关系,当我们给出新的一些特征x的是时候,可以根据这些W值特征x进行内积加截距b来预测出给定的新特征x对应的结果f(x). 然而在采用回归模型分析实际问题中,我们想得出的结果不单纯是…