[洛谷P4072] SDOI2016 征途】的更多相关文章

洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相邻两段路的分界点设有休息站. \(Pine\)计划用\(m\)天到达\(T\)地.除第\(m\)天外,每一天晚上\(Pine\)都必须在休息站过夜.所以,一段路必须在同一天中走完. \(Pine\)希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小. 帮助\(Pine\)求出…
洛谷题目传送门 一开始肯定要把题目要求的式子给写出来 我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\) 题目要乘\(m^2\)再输出,于是 \(m^2s^2=m\sum\limits_{i=1}^{m}(x_i-\overline x)^2\) \(=m(\sum\limits_{i=1}^{m}x_i^2-2\overline{x}\sum\limits_{i=1}^{m}x_i+m\overline{x}^…
问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路必须在同一天中走完. Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小. 帮助Pine求出最小方差是多少. 设方差是v,可以证明,\(v\times m^2\)是一个整数.为了避免精度误差,输出结果时输出\(v\times m^2\). 输入格式 第一行两个数 n.…
传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum _{i=1}^m x_i+sum_n^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2+(sum_n-\sum _{i=1}^m x_i)^2-(\sum _{i=1}^m x_i)^2$$ 然后因为$sum_n$和$\sum _{i=1}^m x_i$两项是定值,且值相等,所…
首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans = v*m^2 = m\times \sum x^2 - sum*sum\) 那我们实际上就是最大化平方和. 由于题目限制了要分\(m\)段.所以我们的\(dp\)状态就是\(f[i][j]\)表示前\(i\)个数分了\(j\)段. 那么一个比较显然的转移 \(dp[i][p]=min(dp[j]…
洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_{n}+D_{n-m}\] 再看看数据范围:n最大\(10^6\),错排好办,直接递推: \[D[i]=(i-1)*(D[i-1]+D[i-2])\] D[0]=1,D[1]=0. 而组合数部分有点麻烦.\[C[i][j]=C[i-1][j]+C[i-1][j-1]\] 用上面这个公式可以做1000…
好久没写斜率优化板子都忘了, 硬是交了十几遍.. 推一下柿子就能得到答案为 \[m*\sum x^2-(\sum x)^2\] 后面是个定值,前面简单dp,斜率优化一下就行了. \(f[i][j]=f[k][j-1]+sum[i]*sum[i]-2sum[i]sum[k]+sum[k]*sum[k]\) \(-f[k][j-1]-sum[k]*sum[k]=-2sum[i]sum[k]-f[i][j]+sum[i]*sum[i]\) #include <cstdio> #include <…
P4070 [SDOI2016]生成魔咒 题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 \(1\).\(2\) 拼凑起来形成一个魔咒串 \([1,2]\). 一个魔咒串 \(S\) 的非空字串被称为魔咒串 \(S\) 的生成魔咒. 例如 \(S=[1,2,1]\) 时,它的生成魔咒有 \([1]\).\([2]\).\([1,2]\).\([2,1]\).\([1,2,1]\) 五种.\(S=[1,1,1]\) 时,它的生成魔咒有 \([1]\).\([1,1]…
P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 $10^9+7$取模. 显然此题的答案就是$C(n,m)*d[n-m]$ 求解组合数$C(n,m)$使用通项公式$\frac{n!}{m!\times (n-m)!}$ 由于$n,m$很大,所以要预处理出$n!$ 由于$10^9+7$是个质…
P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 \(10^9+7\) 取模. 输入格式 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. 输出格式 输出 T 行,每行一个数,表示求出的序列数 输入输出样例 输入 #1 5 1 0 1 1 5 2 1…