题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最后可以得到 $$\sum_{T = 1}^n \frac{n}{T} \frac{n}{T} \sum_{d \mid T}^n \phi(d) \mu(\frac{T}{d})$$ 后面的那个是积性函数,直接筛出来 注意这个函数比较特殊,筛的时候需要分几种情况讨论 1. $H(p) = p - 2…
[BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10^7 Output 按读入顺序输出答案. Sample Input 1 10 Sample Output 136 题解: 显然,$\varphi$和$\mu$都是积性函数,卷起来肯定也是积性函数,可以线性筛来搞.但是本蒟蒻到这里就卡住了,怎么线性筛啊?于是找题解,发现题解都说很简单.无奈,只好打表找规律了.(…
Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10^7 Output 按读入顺序输出答案. Sample Input 1 10 Sample Output 136 sol 这种题,八成和欧拉函数或者莫比乌斯函数有关...... 那就推式子: \(\sum_{i=1}^{n}\sum_{i…
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由于要处理多组询问,所以 bzoj2154 的做法就不好用了,但是这个结论可以套用过来. 然后推公式: (UPD:上面公式最后一行请自行把 $k$ 改成 $n$ ... 由于这里是图片形式就不改了) 设f1(n)=n2mu(n),f2(n)=n,则显然f2是积性函数,f1为两个积性函数的乘积,也是积性…
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之和. 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 4 2 4 3 3 6 5 8 3 样例输出 24 28 233 178 题解 莫比乌斯反演+线性筛 (为了方便,以下公式默认$n\le m$) $\ \ \ \…
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 样例输入 1 2 3 3 样例输出 20 题解 莫比乌斯反演+线性筛 $\sum\limits_{i=1}^n\sum\limits_{j=1}^m\gcd(i,j)^k\\=\sum\limits_{d=1}^{\min(n,m)}d^k\sum\limits_{i=1}^n\sum\limits…
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc)还是比较好算的,讨论一波即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorith…
分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b) for(register int i=(a);i<=(b);++i) #define irin(i,a,b) for(register int i=(a);i>=(b);--i) #define trav(i,a) for(register int i=head[a];i;i=e[i].nxt…
ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: https://ssplaysecond.blogspot.jp/2017/04/blog-post_8.html 莫比乌斯反演 https://ssplaysecond.blogspot.jp/2017/04/blog-post_91.html 狄利克雷卷积与杜教筛 https://ssplayse…
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{d=1}^{n}[gcd(i,j)==d]d \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d] \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{\left…