熵:可以表示一个事件A的自信息量,也就是A包含多少信息. KL散度:可以用来表示从事件A的角度来看,事件B有多大不同. 交叉熵:可以用来表示从事件A的角度来看,如何描述事件B. 一种信息论的解释是: 熵的意义是对A事件中的随机变量进行编码所需的最小字节数. KL散度的意义是“额外所需的编码长度”如果我们用B的编码来表示A. 交叉熵指的是当你用B作为密码本来表示A时所需要的“平均的编码长度”. 一.熵 1.定义 衡量一个事件所包含的信息量 $$S(A)=-\sum_i P_A(x_i)logP_A…
目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)以及JS散度,在深度学习以及机器学习很多地方都用的到,尤其是对于目标函数和损失函数的定义.在逻辑回归问题中,目标函数就是用交叉熵定义的. 1. 信息量(熵) 信息论是应用数学的一个分支,主要研究…
目录 sigmod交叉熵 Softmax转换 Softmax交叉熵 参考资料 sigmod交叉熵 Sigmod交叉熵实际就是我们所说的对数损失,它是针对二分类任务的损失函数,在神经网络中,一般输出层只有一个结点. 假设y为样本标签,_y为全连接网络的输出层的值,那么,这个对数损失定义为 PS:这个是可以用极大似然估计推导出来的 举例: y=0,_y=0.8,那此时的sigmod交叉熵为1.171 import numpy as np def sigmod(x): return 1/(1+np.e…
对多分类问题(multi-class),通常使用 cross-entropy 作为 loss function.cross entropy 最早是信息论(information theory)中的概念,由信息熵(information entropy,与压缩比率有关)变化而来,然后被用到很多地方,包括通信,纠错码,博弈论和机器学习等.交叉熵与信息熵的关系请见:机器学习基础(六)-- 交叉熵代价函数(cross-entropy error). 在运作对 loss function 的定义时,y 是…
熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择一个最佳的划分,使得熵下降最大:深度学习模型最后一层使用 softmax 激活函数后,我们也常使用交叉熵来计算两个分布的“距离”.KL散度和交叉熵很像,都可以衡量两个分布之间的差异,相互之间可以转化. 1. 如何量化信息? 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化.信…
cross entropy 交叉熵的概念网上一大堆了,具体问度娘,这里主要介绍深度学习中,使用交叉熵作为类别分类. 1.二元交叉熵 binary_cross_entropy 我们通常见的交叉熵是二元交叉熵,因为在二分类中的交叉熵可以比较方便画出图像来,如下图,为“二元交叉熵”, 当我们的label标注结果0时,如下图右侧曲线,当预测结果为1时,返回的loss 无穷大,反之,loss 与 label标注结果一致都为0时, loss = 0.  当我们的label标注结果1时, 同理. 2.多元交叉…
机器学习中经常遇到这几个概念,用大白话解释一下: 一.归一化 把几个数量级不同的数据,放在一起比较(或者画在一个数轴上),比如:一条河的长度几千甚至上万km,与一个人的高度1.7m,放在一起,人的高度几乎可以被忽略,所以为了方便比较,缩小他们的差距,但又能看出二者的大小关系,可以找一个方法进行转换. 另外,在多分类预测时,比如:一张图,要预测它是猫,或是狗,或是人,或是其它什么,每个分类都有一个预测的概率,比如是猫的概率是0.7,狗的概率是0.1,人的概率是0.2... , 概率通常是0到1之间…
损失函数用于描述模型预测值与真实值的差距大小,一般有两种比较常见的算法——均值平方差(MSE)和交叉熵. 1.均值平方差(MSE):指参数估计值与参数真实值之差平方的期望值. 在神经网络计算时,预测值要与真实值控制在同样的数据分布内,假设将预测值经过Sigmoid激活函数得到取值范围在0~1之间,那么真实值也归一化到0~1之间. 2.交叉熵:预测输入样本属于某一类的概率. 其中y代表真实值分类(0或1),a代表预测值,交叉熵值越小,预测结果越准. 3.损失函数的选取 损失函数的选取取决于输入标签…
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是ResNet取消了全连接层,也会在最后有一个1000个节点的输出层: 一般情况下,最后一个输出层的节点个数与分类任务的目标数相等.假设最后的节点数为N,那么对于每一个样例,神经网络可以得到一个N维的数组作为输出结果,数组中每一个维度会对应一个类别.在最理想的情况下,如果一个样本属于k,那么这个类别所对…
信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似然估计推导出 KL 散度而加强我们对量化分布间相似性的理解.最后我们简要讨论了信息熵在机器学习中的应用,包括通过互信息选择决策树的特征.通过交叉熵衡量分类问题的损失和贝叶斯学习等. 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化.它最初被发明是用来研究在一个含有噪声的信道上…