不同的GCD算法】的更多相关文章

gcd算法是用来求两个数最大公约数的算法,他是依靠辗转相除(中国好像叫辗转相减)法来求两个数的最大公约数,别的地方也有很多介绍不做过多赘述,主要提供代码供自己参考. gcd(int a,int b) { ?a:gcd(b,a%b); } 对于拓展gcd,是对方程ax+by=c求解: 就是a mod b=c这个方程求解: 具体看代码,不做过多赘述因为别人已经讲的很详细了,在这里copy一下别人的讲解: 我们其实只需要考虑形如 a • x mod n = 1 的方程.因为,如果能解出这样的方程, a…
扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x=1,y=0\)即可 否则:显然\(\gcd(a,b)=\gcd(b,a\mod b)\) 那么可以递归球解\(bx+(a\mod b)y=\gcd(a,b)\)的解. 然后还是要推当前\(x,y\)的. 设\(bx+(a\mod b)y=\gcd(a,b)\)的解为\(x_0,y_0\), \(a…
UPD 2018.3.30 这个好像就是更相减损术的样子emmm UPD 2018.5.22 好像不是更相减损术而是叫Stein算法的样子emmm 蒟蒻来做个二进制GCD笔记. 为什么要写这个东西呢,因为按照ysy神犇在这次luogu夏令营的说法,常数会小很多. 我再查了一下(ysy神犇没说实现啊orz),这玩意的原理说起来大概是这样的: 因为普通的辗转相除法求gcd需要用到取模,所以常数比较慢. 我们使用另一种算法: 求gcd(a,b).有三种情况: 1.a,b为偶数,则gcd(a,b)=2*…
分类: C语言程序2014-10-08 15:10 28人阅读 评论(0) 收藏 举报 gcdC语言程序位运算 早在公元前300年左右,欧几里得就在他的著作<几何原本>中给出了高效的解法--辗转相除法.辗转相除法使用到的原理很聪明也很简单,假设用f(x, y)表示x,y的最大公约数,取k = x/y,b = x%y,则x = ky + b,如果一个数能够同时整除x和y,则必能同时整除b和y:而能够同时整除b和y的数也必能同时整除x和y,即x和y的公约数与b和y的公约数是相同的,其最大公约数也是…
/* 二进制求最大公约数.由于传统的GCD,使用了%,在计算机运行过程中要花费大量的时间,所以,采取二进制的求法,来减少时间的消耗. 算法: 当a,b都是偶数时: gcd(a,b)=2*gcd(a/2,b/2);当a,b一奇一偶时: if(a&1) gcd(a,b)=gcd(a,b/2);                  else    gcd(a,b)=gcd(a/2,b);当a,b都是奇数时:  if(a>b)                     gcd(a,b)=gcd( (a-…
以下内容均节选自<算法导论>第31章 最大公约数 定义:若:\[\begin{array}{l}a = p_1^{e_1}p_2^{e_2} \ldots p_r^{e_r}\\b = p_1^{f_1}p_2^{f_1} \ldots p_r^{f_r}\end{array}\] 则:\[\gcd( a,b) = p_1^{\min ( e_1,f_1)}p_2^{\min ( e_2,f_2)} \cdots p_r^{\min ( e_r,f_r )}\] GCD递归定理:对任意非负整数…
二进制GCD     GCD这种通用的算法相信每个OLER都会 ,辗转相除,代码只有四行 : int GCD(int a,int b){ if(b==0) return a; return GCD(b,a%b); } GCD算法使通过辗转相除法来求解两个数的最大公因数,又称欧几里得算法      可以知道:GCD(x,y)=GCD(x,y-x)      我们将b能被a整除记作a|b      那么假设z是最大公因数,那么有:             如果z|x,z|y,则z|(y-x)  (因…
HDU 1222   Wolf and Rabbit   (最大公约数)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88159#problem/G 题目: Description There is a hill with n holes around. The holes are signed from 0 to n-1.        A rabbit must hide in one of the holes…
二进制GCD算法基本原理是: 先用移位的方式对两个数除2,直到两个数不同时为偶数.然后将剩下的偶数(如果有的话)做同样的操作,这样做的原因是如果u和v中u为偶数,v为奇数,则有gcd(u,v)=gcd(u/2,v).到这时,两个数都是奇数,将两个数相减(因为gcd(u,v) = gcd(u-v,v)),得到的是偶数t,对t也移位直到t为奇数.每次将最大的数用t替换. 二进制GCD算法优点是只需用减法和二进制移位运算,不像Euclid's算法需要用除法,这在某些嵌入式系统中可能排上用场. 本例实现…
2019年1月8日16:10:51 svn地址:svn://gitee.com/zxadmin/live_z    代码在code里面 <?php /* * 加权轮训算法 * * * $arr = array( array('id' => 'A', 'weight' => 3), array('id' => 'B', 'weight' => 3), array('id' => 'C', 'weight' => 6), array('id' => 'D', '…
http://netsecurity.51cto.com/art/201508/488766.htm RSA加密曾被视为最可靠的加密算法,直到秀尔算法出现,打破了RSA的不灭神话. RSA加密 VS 秀尔算法 作为RSA加密技术的终结者——“太多运算,无法读取”的秀尔算法(Shor’s algorithm)不是通过暴力破解的方式找到最终密码的,而是利用量子计算的并行性,可以快速分解出公约数,从而打破了RSA算法的基础(即假设我们不能很有效的分解一个已知的整数).同时,秀尔算法展示了因数分解这问题…
乘法逆元应用在组合数学取模问题中,这里给出的实现不见得好用 给出拓展GCD算法: 扩展欧几里得算法是指对于两个数a,b 一定能找到x,y(均为整数,但不满足一定是正数) 满足x*a+y*b=gcd(a,b) gcd(x,y)是指x 与 y的最大公约数 有啥用呢?求解形如 a*x +b*y = c 的通解 然后我们先介绍同余方程,再介绍乘法逆元 同余方程 a≡b(mod m) 等价于小学的运算式 b÷m 余数为a 也就是a mod m=b 其实介绍这个就是看怎么把≡拿掉 乘法逆元 ax ≡ (mo…
一.最大公约数和最小公倍数问题 题目描述: 输入2个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数. 条件:1.P,Q是正整数: 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求: 满足条件的所有可能的两个正整数的个数. 输入描述: 每个测试文件包含不超过5组测试数据,每组两个正整数x0和y0(2<=x0<100000,2<=y0<=1000000). 输出描述: 对于每组输入数据,输出…
1. 一步之遥 [问题描述]从昏迷中醒来,小明发现自己被关在X星球的废矿车里.矿车停在平直的废弃的轨道上.他的面前是两个按钮,分别写着“F”和“B”. 小明突然记起来,这两个按钮可以控制矿车在轨道上前进和后退.按F,会前进97米.按B会后退127米.透过昏暗的灯光,小明看到自己前方1米远正好有个监控探头.他必须设法使得矿车正好停在摄像头的下方,才有机会争取同伴的援助.或许,通过多次操作F和B可以办到. 矿车上的动力已经不太足,黄色的警示灯在默默闪烁…每次进行 F 或 B 操作都会消耗一定的能量.…
题目 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连接 1 次或多次)时,我们才认定 "T 能除尽 S". 返回最长字符串 X,要求满足 X 能除尽 str1 且 X 能除尽 str2. 示例 1: 输入:str1 = "ABCABC", str2 = "ABC" 输出:"ABC" 示例 2: 输入:str1 = "ABABAB", str2 = "ABAB"…
Description Input 第一行输入一个正整数T(T<=85),表示测试数据的组数. 每组数据第一行包含两个正整数n,m(1<=n,m<=2000),表示序列的长度. 第二行包含n个正整数,表示a[0],a[1],...,a[n-1](0<=a[i]<=1000000). 第三行包含m个正整数,表示b[0],b[1],...,b[m-1](0<=b[i]<=1000000). Output 对于每组数据输出一行一个整数,即答案. Sample Input…
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)(a,b的最大公约数). 其核心内容可以陈述为:\((a,b)=(b,a\%b)\),然后反复迭代该式缩小\(a,b\)规模,直到\(b=0\),得到a为最大公约数. 证明 设两数为\(a\ b(b<a)\),求它们最大公约数的步骤如下:用\(b\)除\(a\),即\(a/b=q-..r\),得\(a…
模拟又炸了,我死亡 $exgcd$(扩展欧几里德算法)用于求$ax+by=gcd(a,b)$中$x,y$的一组解,它有很多应用,比如解二元不定方程.求逆元等等,这里详细讲解一下$exgcd$的原理. 了解$exgcd$算法前,需要$gcd$算法做铺垫.gcd,又称辗转相除法,用于计算两个整数 $a,b$ 的最大公约数. $gcd$函数的基本性质: $gcd(a,b)=gcd(b,a) $ $gcd(a,b)=gcd(-a,b) $ $gcd(a,b)=gcd(|a|,|b|)$ $gcd(a,b…
去掉敏感信息后的不完整版 ==========================================================================2018年12月29日 记录: 目前在维护的最低PHP版本只有5.6了:1.5.6.39版本convert.quoted-printable-encode过滤器时核心的segfault错误imap扩展的错误phar扩展的错误,PharData类提供了一个访问和创建不可执行的tar和zip存档的高级接口5.6.38版本apac…
S1&2.个人项目时间估算 PSP表格如下: PSP2.1 Personal Software Process Stages Time(Before) Time(After) Planning 计划   · Estimate · 估计这个任务需要多少时间 2 4 Development 开发   · Analysis · 需求分析 (包括学习新技术) 3 5 · Design Spec · 生成设计文档 8 11 · Design Review · 设计复审 (和同事审核设计文档) 1 0 ·…
go语言圣经-声明1.四种类型的声明语句:var.const.type和func,分别对应变量.常量.类型和函数实体对象的声明2.包一级声明语句声明的名字可在整个包对应的每个源文件中访问,局部声明的名字就只能在函数内部很小的范围被访问 go语言圣经-变量1.var 变量名字 类型 = 表达式2.零值初始化机制,数值类型零值是0,布尔类型变量对应的零值是false,字符串类型对应的零值是空字符串,接口或引用类型(包括slice.指针.map.chan和函数)变量对应的零值是nil3.同时声明一组变…
一.概述 回忆欧拉回路问题,要求找出一条经过图的每条边恰好一次的路径,这个问题是线性可解的.哈密尔顿圈问题是找一个简单圈,该圈包括图的每一个顶点.对于这个问题,现在还没有发现线性算法. 对于有向图的单源无权最短路径问题也是有线性时间可解的,但是对应的最长简单路径问题(longest-simple-path)尚没有发现线性算法. 这些问题的变化,其情况实际上比描述得还要糟.对于这些变种问题不仅不知道线性算法,而且不存在保证以多项式时间运行的已知算法.这些问题的一些熟知算法对于某些情况可能要花费指数…
题意与分析 (Codeforces 548C) 我开始以为是一条数学题,死活不知道怎么做,无奈看题解,才知这是一条暴力,思维江化了- - 题意大概是这样的: 两个东西的初始高度分别为h1,h2" role="presentation">h1,h2h1,h2,每秒二者的高度分别变化为(x1h1+y1)%m1" role="presentation">(x1h1+y1)%m1(x1h1+y1)%m1与(x2h2+y2)%m2"…
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7…
先水了一下昨天没讲完的贪心. 然后今天讲的分治. 安利自己水的二分与三分. 二分一定要满足有序.三分适合解决单峰函数问题. 第一道题借教室.运用差分和二分查找. 三分: P1731 [NOI1999]生日蛋糕 p1903国家集训队数颜色/维护队列 高精度除法: 还有一个lyd的秘技:高精度开方. 然后是矩阵乘法,矩阵快速幂,高斯消元. 然后是欧拉大作:欧拉筛(线性筛),埃拉托斯特尼筛法. 积性函数.莫比乌斯函数. 快速gcd算法. a*和ida*神仙算法(完全不懂. exgcd与逆元. 中国剩余…
这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解   扩展欧几里德算法-求解不定方程,线性同余方程. 设过s步后两青蛙相遇,则必满足以下等式: (x+m*s)-(y+n*s)=k*l(k=0,1,2....) 稍微变一下形得: (n-m)*s+k*l=x-y 令n-m=a,k=b,x-y=c,即 a*s+b*l=c 只要上式存在整数解,则两青蛙能相遇,否则不能. 首先想到的一个方法是用两次for循环来枚举s,l的值,看是否存在s,l的整数解,若存在则输入最小的s,…
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ∀x(x|0) and ∀x(0| x). 1个引理: 假设 k|a, k|b,则对任意的 x,y  ∈ Z, k|(xa+yb)均成立. 证明: k|a => a=pk, k|b => b==qk (其中 p,q ∈ Z) 于是有 xa+yb=xpk+yqk=(xp+yq)k 因为 k|(xp…
之前一直只知道欧几里得辗转相除法,今天学习了一下另外一种.在处理大数时更优秀的算法--Stein 特此记载 1.欧几里得(Euclid)算法 又称辗转相除法,依据定理gcd(a,b)=gcd(b,a%b) 实现过程演示: sample:gcd(15,10)=gcd(10,5)=gcd(5,0)=5 C语言实现: int Euclid_GCD(int a, int b) { return b?Euclid_GCD(b, a%b):a; } 2.Stein 算法 一般实际应用中的整数很少会超过64位…
Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用Exgcd解之即可到答案,Exgcd即扩展欧几里得算法.他还能求乘法逆元,同余方程通解.没有你想得到的,只有你做不到的. 这里是对于两个算法的学习小记 Content 欧几里得算法 算法介绍 由百度百科得 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 从整数的除法可知:对任给二整…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数.其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a = kb +r 因此d也是(a,b)的公约数 因此(a,b…