Spark on YARN的部署】的更多相关文章

Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on yarn了,假设现在准备环境已经部署完毕,这里是在CDH 环境下部署Spark 除了上面的环境准备,安装Spark前,还应该保证Scala正常安装,基于Scala的情况下,就可以开始部署Spark了, 首先还是解压Spark,安装位置就是/bigdata/spark -bin-hadoop2..t…
就在昨天,北京时间5月30日20点多.Spark 1.0.0最终公布了:Spark 1.0.0 released 依据官网描写叙述,Spark 1.0.0支持SQL编写:Spark SQL Programming Guide 个人认为这个功能对Hive的市场的影响非常小.但对Shark冲击非常大.就像win7和winXP的关系,自相残杀嘛? 这么着急的公布1.x 版是商业行为还是货真价实的体现,让我们拭目以待吧~~~~ 本文是CSDN-撸大湿原创,如要转载请注明出处,谢谢:http://blog…
最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大家的面前. 作为技术发烧友,作为一个看客,来围观下,不过从PPT中列出来的技术来看,未来的发展趋势还是说是有的,而且还是很有发展前景的. 现在Spark和Yarn也就发布2年多的时间,随着社区力量的跟上,不断的将之前的项目都放到一个更好的资源架构的整合上来实现.特别是放到内存上来实现,在速度和效率上…
运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大家也可参考spark的官网地址:http://spark.apache.org/docs/latest/running-on-yarn.html 1. 在yarn上执行spark 需要确保提交spark任务的客户端服务器上, HADOOP_CONF_DIR 或者 YARN_CONF_DIR 目录中包…
最近从Hadoop 1.x 转到Hadoop 2.x 同时将一些java 程序转为Scala的程序将平台上的代码减少了很多,在实施的过程中,开到一些Spark相关的YARN的部署上都是基于之前的Hadoop 1.x的部分方式,在Hadoop2.2 +版本之上 基本上就不用这么部署了.其原因就是Hadoop YARN 统一资源管理. 在Spark官网上 Spark应用在集群上以独立的进程集合运行,在你的主程序(称为驱动程序)中以SparkContext对象来调节. 特别的,为了在集群上运行, Sp…
欢迎转载,转载请注明出处,徽沪一郎. 概要 Hadoop2中的Yarn是一个分布式计算资源的管理平台,由于其有极好的模型抽象,非常有可能成为分布式计算资源管理的事实标准.其主要职责将是分布式计算集群的管理,集群中计算资源的管理与分配. Yarn为应用程序开发提供了比较好的实现标准,Spark支持Yarn部署,本文将就Spark如何实现在Yarn平台上的部署作比较详尽的分析. Spark Standalone部署模式回顾 上图是Spark Standalone Cluster中计算模块的简要示意,…
Spark on Yarn 1. Spark on Yarn模式优点 与其他计算框架共享集群资源(eg.Spark框架与MapReduce框架同时运行,如果不用Yarn进行资源分配,MapReduce分到的内存资源会很少,效率低下):资源按需分配,进而提高集群资源利用率等. 相较于Spark自带的Standalone模式,Yarn的资源分配更加细致 Application部署简化,例如Spark,Storm等多种框架的应用由客户端提交后,由Yarn负责资源的管理和调度,利用Container作为…
. 一.Hadoop Yarn组件介绍: 我们都知道yarn重构根本的思想,是将原有的JobTracker的两个主要功能资源管理器 和 任务调度监控 分离成单独的组件.新的架构使用全局管理所有应用程序的计算资源分配. 主要包含三个组件ResourceManager .NodeManager和ApplicationMaster以及一个核心概念Container. 1.ResourceManager(RM)  就是所谓的资源管理器,每个集群一个,实现全局的资源管理和任务调度.它可以处理客户端提交计算…
原文:http://www.aboutyun.com/thread-9425-1-1.html 问题导读1.Connection Refused可能原因是什么?2.如何判断内存溢出,该如何解决?扩展:3.你认为/etc/hosts配置错误,会对集群有什么影响? 1 概述     Spark的on Yarn模式,其资源分配是交给Yarn的ResourceManager来进行管理的,但是目前的Spark版本,Application日志的查看,只能通过Yarn的yarn logs命令实现.     在…
在YARN上运行Spark 在Spark0.6.0版本开始支持YARN模式,随后的版本在逐渐地完善. 在YARN上启动Spark 确保HADOOP_CONF_DIR或YARN_CONF_DIR属性的值已经指向了Hadoop集群的配置文件.Spark通常使用这些配置信息来向HDFS写入数据和连接到YARN资源管理器.这个目录下所有的文件将会被分发到YARN集群中,所以所有应用使用的容器都使用同样的配置.如果Java的系统属性或YARN没有管理的环境变量等配置,它们应该在Spark 的应用配置项中配…