参考地址:https://ethereon.github.io/netscope/#/preset/vgg-16 按照上面的图来写即可. 论文地址:https://arxiv.org/pdf/1409.1556.pdf // Define a new Module. struct Net : torch::nn::Module { Net() { conv1_1 = torch::nn::Conv2d(torch::nn::Conv2dOptions(3, 64, { 3,3 }).paddin…
如何使用 libtorch 实现 AlexNet 网络? 按照图片上流程写即可.输入的图片大小必须 227x227 3 通道彩色图片 // Define a new Module. struct Net : torch::nn::Module { Net() { conv1 = torch::nn::Conv2d(torch::nn::Conv2dOptions(3, 96, { 11,11 }).stride({4,4})); conv2 = torch::nn::Conv2d(torch::…
如何使用 libtorch 实现 LeNet 网络? LeNet 网络论文地址: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool1:14x14x6 卷积核:5x5,stride=1 得到Conv2:10x10x16 池化层Pool2:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool2:5x5x16 然后将Pool2展开,得到长度为400的向量 经过第一个全连接层,…
一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法.实际上在计算机视觉任务中表现良好的神经网络框架往往也适用于其它任务,也许你的任务也不例外.也就是说,如果有人已经训练或者计算出擅长识别猫.狗.人的神经网络或者神经网络框架,而你的计算…
上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得了第2名的成绩(第一名是GoogLeNet,也是同年提出的).在论文<Very Deep Convolutional Networks for Large-Scale Image Recognition>中,作者提出通过缩小卷积核大小来构建更深的网络. Vgg网络结构 VGGnet是Oxford的…
视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自己特定任务的网络进行调优.目前,ILSVRC比赛(针对1000类的分类问题)所使用数据的训练集126万张图像,验证集5万张,测试集10万张(标注未公布),大家一般使用这个比赛的前几名的网络来搭建自己特定任务的神经网络. 本篇博文主要简单讲述怎么使用TensorFlow调用预训练好的VGG网络,其他的…
在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用. 一 简介 slim被放在tensorflow.contrib这个库下面,导入的方法如下: import tensorflow.contrib.slim as slim 这样我们就可以使用slim了,既然说到了,先来了解tensorflow.contrib这个库,tensorflow官方对它的描述…
一.文献解读 我们知道GAN 在图像修复时更容易得到符合视觉上效果更好的图像,今天要介绍的这篇文章——ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks,它 发表于 ECCV 2018 的 Workshops,作者在 SRGAN 的基础上进行了改进,包括改进网络的结构.判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络. 超分辨率生成对抗网络(SRGAN)是一项开创性的工作,能够在单一图像超分辨率中生成逼…