P4930「FJ2014集训」采药人的路径】的更多相关文章

题目:P4930「FJ2014集训」采药人的路径 思路: 这篇不算题解,是让自己复习的,什么都没说清楚. 很久没有写点分治了,以前为了赶课件学的太急,板子都没打对就照着题解写题,导致学得很不扎实. 这道题差不多是在郭老师的指导下一点点凑出来的,还是没能自己完整写出一道题,惭愧. 这道题大意是:给出一棵边权为0/1的树,求满足以下条件的路径总数:0的个数等于1的个数,且路径上存在一点到路径两端也满足该条件. 这种求路径总数的题,可以想到用点分治. 把0看作-1,就可以转化为路径边权和为0. 如果没…
啦啦啦 来写一篇题解 洛谷链接: P4930 「FJ2014集训」采药人的路径 统计路径?嗯往点分治上想. 把0和1转化为-1和1,求和完dis为0的路径就是阴阳平衡的路径了. 如果题目没有限制要有中间休息站那就是比较裸的点分治淀粉质题了. 用两个数组 f[dis]和g[dis]. f[dis]:此时DFS的这棵子树里到根距离为dis的路径条数. g[dis]:此时DFS的这棵子树外到根距离为dis的路径条数. 然后里外配对一下统计答案就可以啦~ 如果有休息站也没复杂到哪里去. f[dis][0…
「BZOJ3694」「FJ2014集训」最短路 首先树剖没得说了,这里说一下并查集的做法, 对于一条非树边,它会影响的点就只有u(i),v(i)到lca,对于lca-v的路径上所有点x,都可通过1-t-u-v-x,长度为dep[u]+dep[v]+w(i)-dep[x],lca-u同理, 将非树边按dep[u]+dep[v]+w(i)从小到大排序,显然每个点被前一条能更新他的边更新后即是最优解,此时将它与父亲节点合并,修改的时候用并查集向上修改即可. #include<algorithm> #…
题目 考虑一下把\(0\)看成\(-1\),那么就是找到一条边权和为\(0\)的路径,且这条路径可以被分成两段,边权和都是\(0\) 没有第二个限制就是点分裸题了 其实有了第二个限制还是点分裸题 考虑那个断点肯定会存在于当前分治重心的某一边,或者直接在分治重心上,我们在求每个点到分治重心的距离的时候判断一下上面能否有一个点成为断点就好了 具体做法就是开个桶,判断每个点的祖先是否有一个和它的分治重心的距离相等 之后就把点分成了两类,一类是到分治重心的路径上存在断点,一类是不存在的,显然不存在的只能…
小道士的矫情之路: 点分治, 对于每个子树,处理其内经过根(重心)的路径,然后递归下一层子树: 如何处理经过根的合法路径 合法有两个要求: 把输入的0改成-1后 1.len=0; 2.存在一个点i使被她分开的两个路径len均为零: 在每次统计中我们可以dfs统计每条从根开始的路径(half_way), 任意两条这样的路径拼成一条可能合法的路径: check合法? 通过dfs; 统计1,每个half_way的len 还要统计,2,这个half_way上是否有一个点到half_way的终点(根之外的…
[LOJ#2330]「清华集训 2017」榕树之心 试题描述 深秋.冷风吹散了最后一丝夏日的暑气,也吹落了榕树脚下灌木丛的叶子.相识数年的Evan和Lyra再次回到了小时候见面的茂盛榕树之下.小溪依旧,石桥依旧,榕树虽是历经荣枯更迭,依旧亭亭如盖,只是Evan和Lyra再也不是七八年前不经世事的少年了. -- "已经快是严冬了,榕树的叶子还没落呢--" "榕树是常绿树,是看不到明显的落叶季节的--" "唉--想不到已经七年了呢.榕树还是当年的榕树,你却不是…
Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符,第 \(i\) 个音符的音高为 \(h_i\).IA 的音域是 \(A\),她只能唱出 \(1\sim A\) 中的正整数音高.因此 \(1\le h_i\le A\). 在写歌之前,IA 需要确定下这首歌的结构,于是她写下了 \(Q\) 条限制,其中第 \(i\) 条为:编号在 \(l_i\) 到…
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上,树根在最上面,左右子树分别在树根的左下方与右下方,且他们也都满足 这样的悬挂规则.为了让这个模型更加美观,小Y选择了一种让这棵二叉树的中序遍历序列最小的悬挂方法.所谓中序遍历最小,就是指中序遍历的结点编号序列的字典 序最小. 一天,这个模型不小心被掉在了地上,幸运的是,所有结点和边都没摔坏,但是她想…
Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在方格某些方向的边界的中点有接口,所有水管的粗细都相同,所以如果两个相邻方格的公共边界的中点都有接头,那么可以看作这两个接头互相连接.水管有以下 \(15\) 种形状: 游戏开始时,棋盘中水管可能存在漏水的地方. 形式化地:如果存在某个接头,没有和其它接头…
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\) 个点. 现在我们需要再连接 \(n-1\) 条边,使该图变成一棵树.对一种连边方案,设原图中第 \(i\) 个连通块连出了 \(d_i\) 条边,那么这棵树 \(T\) 的价值为: \[ \mathrm{val}(T) = \left(\prod_{i=1}^{n} {d_i}^m\right)…