PyTorch深度学习计算机视觉框架】的更多相关文章

Taylor Guo @ Shanghai - 2018.10.22 - 星期一 PyTorch 资源链接 图像分类 VGG ResNet DenseNet MobileNetV2 ResNeXt SqueezeNet ShuffleNet ShuffleNet V2 位姿估计 CPM: Convolutional Pose Machines OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields…
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能.通过学习<深度学习入门之PyTorch>,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型.学到机器学习中的线性回归和 Logistic 回归.深度…
人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍 工业机器人,家用机器人这些只是人工智能的一个细分应用而已.图像识别,语音识别,推荐算法,NLP自然语言,广告算法,预测算法,数据挖掘,无人驾驶.医疗咨询机器人.聊天机器人,这些都属于人工智能的范畴. 人工智能现在用到的基础算法是深度学习里面的神经网络算法,具体应用场景有不同的专业算法实际上很多细分领域的,差别还是很多的机器人的对运动控制算法,图像识别算法要求比较高像alphaGo,推荐算法…
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要的是,它将深度学习的每一个细节都原原本本地展现出来,大大降低了人们学习研究和开发的难度. 一.从Caffe的开发中了解到的用户需求:深度学习的框架总会不断改变,Caffe也会有被新框架代替的一天.但是在开发Caffe的过程中,贾扬清发现大家喜欢的框架其实有着很多相似的地方,这些闪光点拥有很长的生命周…
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism.在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具. 深度学习是机器学习和人工智能的一种形式,利用堆积在彼此顶部的神经网络的多个隐藏层来尝试形成对数据更深层次的“理解”. 最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的…
人工智能范畴及深度学习主流框架,谷歌 TensorFlow,IBM Watson认知计算领域IntelligentBehavior介绍 ====================================== 大家现在对人工智能的期望太高了,2017是人工智能投资资本热的一年,但实际突破还是有限,估计过几年又会死掉一大批人工智能的创业公司,大家变得回归理性,调整到正常的认知水平上. 这种革命性技术不可能有资本追求快速暴利那么快见效的,几年内都很难有重大突破. 2020年再来看估计能有理性后的…
深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction=True, weights=None) 这是一个用于构建很常见的自动编码模型.如果参数output_reconstruction=True,那么dim(input)=dim(output):否则dim(output)=dim(hidden). inputshape: 取决于encoder的定义 ou…
深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记 例: keras.layers.core.TimeDistributedDense(output_dim,init='glorot_uniform', activation='linear', weights=None W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint…
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activation='linear', weights=None W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None) in…
反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性模型就是一个最简单的神经网络的结构,其内部参数的更新过程如下: 对于简单的模型来说可以直接使用表达式的方式来更新权重,但是如果网络结构比较复杂(如下图),直接使用解析式的方式来更新显然有些复杂且不太可能实现. 反向传播就是为了解决这种问题.反向传播的基本思想就是将网络看成一张图,在图上传播梯度,从而使用链式传…
多分类问题 目录 多分类问题 Softmax 在Minist数据集上实现多分类问题 作业 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili Softmax 这一讲介绍使用softmax分类器实现多分类问题. 上一节课计算的是二分类问题,也就是输出的label可以分类为0,1两类.只要计算出\(P(y=1)\)的概率,那么\(P(y=0)=1-P(y=1)\):所以只需要计算一种类型的概率即可,也就是只要一个参数. 而在使用…
处理多维特征的输入 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 这一讲介绍输入为多维数据时的分类. 一个数据集示例如下: 由于使用的是多维的数据,因此模型中的x和y都应该变为向量的形式,变为如下式子: 而下方针对多维数据的式子中的一部分可以使用矩阵相乘的方式表示: \[\hat y^{(i)}=\sigma([x_1^{(i)}...x_8^{(i)}]\begin{bmatrix} w_1\\ .\\ .\\ .\…
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…
相关的代码都在Github上,请参见我的Github,https://github.com/lijingpeng/deep-learning-notes 敬请多多关注哈~~~ All in one docker 如果你不想单独安装每个深度学习组件,并且厌倦于安装过程中的各种依赖冲突等问题,那么推荐你使用Docker来搭建深度学习工作环境.下面是一个可以参考的 All in one docker 环境.几乎包含了所有的流行的深度学习框架,并且分别有CPU版本和GPU版本,与虚拟机不同的是,Dock…
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开. 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开.但为什么效果不好,主要原因是你很难保证样本点的分布会如图所示那么规则,我们无法控制其分布,当绿色的点中混杂几个蓝色的点,就很难分开了,及时用曲线可以分开,这…
  0x00 PyTorch是什么? PyTorch是一个基于Python的科学计算工具包,它主要面向两种场景: 用于替代NumPy,可以使用GPU的计算力 一种深度学习研究平台,可以提供最大的灵活性和速度 0x01 开始学习 1.Tensors Tensors(张量)类似于numpy的ndarrays,不过Tensors还可以运行于GPU上以提升计算速度. from __future__ import print_function import torch 创建一个5x3且未初始化的矩阵: x…
背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Tensorflow做深度学习做深度学习的网络搭建和训练需要通过PYTHON代码才能使用,对于不太会写代码的同学还是有一定的使用门槛的.本文将介绍另一个深度学习框架Caffe,通过Caffe只需要填写一些配置文件就可以实现图像分类的模型训练. 关于PAI的深度学习功能开通,请务必提前阅读https://…
什么是 PyTorch? PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群: NumPy 的替代品,可以利用 GPU 的性能进行计算. 深度学习研究平台拥有足够的灵活性和速度 开始学习 Tensors (张量) Tensors 类似于 NumPy 的 ndarrays ,同时  Tensors 可以使用 GPU 进行计算. from future import print_function import torch 构造一个5x3矩阵,不初始化. x = torch.em…
获得 fb首席科学家力挺的 pytorch教程 发布啦, 看截图 ![file](https://img2018.cnblogs.com/blog/1876748/201911/1876748-20191122200709476-1996577118.jpg) 整个 pdf一共141页,相对 其它教程来说 已经 相当精简了, 先看一下目录结构 ![file](https://img2018.cnblogs.com/blog/1876748/201911/1876748-2019112220070…
Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作.Caffe是纯粹的C++/CUDA架构,支持命令行.Python和MATLAB接口:可以在CPU和GPU直接无缝切换: Caffe::set_mode(Caffe::GPU); Caffe的优势 上手快:模型与相应优化都是以文本形式而非代码形式给出. Caffe给出了模型的定义.最优化设置以及预训练的权重,方便…
2. 神经网络的搭建以及迁移学习的测试 7.项目总结 通过本次水果图片卷积池化全连接试验分类项目的实践,我对卷积.池化.全连接等相关的理论的理解更加全面和清晰了.试验主要采用python高级编程语言的TensorFlow和Keras这两个库.在实验学习的过程中,开始时,对于TensorFlow和Keras并不是很了解,里面提供的许多方法也不熟悉,但经过老师课堂的讲解和演示一些关键的.和常用的方法或函数,以及对相关参数的传递.变化,如:权值的变化.图片尺寸的变化.图片通道的变化.偏置的设置.优化函…
anaconda3.5.2.0----python3.6: conda  install   tensorflow-gpu  -y --prefix  /media/wkr/diskHgst/ubun/env/anaconda3520 conda  install  pytorch  cuda92  -c soumith  -y   --prefix  /media/wkr/diskHgst/ubun/env/anaconda3520 conda  install   -c caffe2 caf…
这是https://zhuanlan.zhihu.com/p/25572330的学习笔记. Tensors Tensors和numpy中的ndarrays较为相似, 因此Tensor也能够使用GPU来加速运算. from __future__ import print_function import torch x = torch.Tensor(5, 3) # 构造一个未初始化的5*3的矩阵 x = torch.rand(5, 3) # 构造一个随机初始化的矩阵 x # 此处在notebook中…
  在本节中,我们将学习如何利用DataParallel使用多个GPU. 在PyTorch中使用多个GPU非常容易,你可以使用下面代码将模型放在GPU上: model.gpu() 然后,你可以将所有张量拷贝到GPU上: mytensor = my_tensor.gpu() 请注意,仅仅调用my_tensor.gpu()并不会将张量拷贝到GPU上,你需要将它指派给一个新的张量,然后在GPU上使用这个新张量. 在多个GPU上执行你的前向和后向传播是一件很自然的事情.然而,PyTorch默认情况下只会…
  太棒啦!到目前为止,你已经了解了如何定义神经网络.计算损失,以及更新网络权重.不过,现在你可能会思考以下几个方面: 0x01 数据集 通常,当你需要处理图像.文本.音频或视频数据时,你可以使用标准的python包将数据加载到numpy数组中.然后你可以将该数组转换成一个torch.*Tensor. 对于图像,Pillow.OpenCV这些包将有所帮助. 对于音频,可以使用scipy和librosa包. 对于文本,无论是基于原始的Python还是Cython的加载,或者NLTK和SpaCy都将…
  在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的框架,这意味着你的后向传播是由你的代码运行方式来定义的,并且每一个迭代都可以是不同的. 下面,让我们使用一些更简单的术语和例子来解释这个问题. 0x01 变量(Variable) autograd.Variable是autograd包的核心类,它封装了一个张量,并支持几乎所有在该张量上定义的操作.一…
  神经网络可以通过使用torch.nn包来构建. 既然你已经了解了autograd,而nn依赖于autograd来定义模型并对其求微分.一个nn.Module包含多个网络层,以及一个返回输出的方法forward(input) . 例如,查看下图中的对数字图片分类的网络: 这是一个简单的前馈网络.它接受输入,并将输入依次通过多个层,然后给出输出结果. 对于神经网络来说,一个经典的训练过程包括以下步骤: 定义一个包含一些可学习的参数(或权重)的神经网络 对输入数据集进行迭代 通过网络处理输入 计算…
@ 目录 一.工具安装 1.1 Anaconda 安装 1.2 Pytorch安装 二.编辑器安装 2.1 Pycharm安装 2.2 Jupyter安装 OS: ubuntu 20.04(虚拟机) 一.工具安装 1.1 Anaconda 安装 首先安装Anaconda ,我是去清华大学镜像站下载,版本为 Anaconda3-5.2.0-Linux-x86_64.sh 参考这篇CSDN博客安装好. 安装成功测试: 首先创建一个虚拟环境: conda create -n pytorch pytho…
Overview 1.PyTorch简介 ​ PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序.它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速,同时还支持动态神经网络. 2.与TensorFlow区别 ​ pytorch是一个动态的框架,而TensorFlow是静态框架(2.x版本也为动态框架优先).静态框架就是指我们首先构建一个计算图,构建完成之后这个图就不再变化,通过给变量赋值来进行计算,这样势必导致我们需要修改逻辑的时…
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 官方推荐的一篇教程 Tensors #Construct a 5x3 matrix, uninitialized: x = torch.empty(5, 3) #Construct a randomly initialized matrix: x = torch.rand(5, 3) # Construct a matrix filled zeros and…