在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理,更多的时候,使用预训练好的词向量会带来更优的性能.下面分别介绍使用gensim和torchtext两种加载预训练词向量的方法. 1.使用gensim加载预训练词向量    对于如下这样一段语料 test_sentence = """When forty winters shall besiege thy brow,And dig deep tren…
一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现代词向量技术常用的模型 Word2Vec.在实验中将以小说<三体>为例,展示了小语料在 Word2Vec 模型中能够取得的效果. 在最后一个将加载已经训练好的一个大规模词向量,并利用这些词向量来做一些简单的运算和测试,以探索词向量中包含的语义信息. 知识点 N-Gram(NPLM) 语言模型 Wo…
FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fastText 文本分类(paper:A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification(高效文本分类技巧)), 另一部分是词嵌入学习(paper:P. Bojanowski*, E. Grave*…
最近在家听贪心学院的NLP直播课.都是比较基础的内容.放到博客上作为NLP 课程的简单的梳理. 本节课程主要讲解的是词向量和Elmo.核心是Elmo,词向量是基础知识点. Elmo 是2018年提出的论文 <Deep contextualized word representtations>,在这篇论文中提出了很重要的思想Elmo,Elmo 是一种基于特征的语言模型,用预训练的语言模型,生成更好的特征. Elmo是一种新型深度语境化词表征,可对词进行复杂特征(如句法和语义)和词在语言语境中的变…
自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方法,基本思想是:用一个词语周边其他词语出现的次数(或者说两个词共同出现的次数)来表示每一个词语,此时每个词向量的维度等于词库容量,每一维存储着词库对应序号的词语出现在当前词语周围的次数,所有这些词向量组成的矩阵就是共现矩阵. 我们也可以换一个角度来理解共现矩阵,共现矩阵就是两个词同时出现的次数,共现…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/232 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/233 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
R语言由于效率问题,实现自然语言处理的分析会受到一定的影响,如何提高效率以及提升词向量的精度是在当前软件环境下,比较需要解决的问题. 笔者认为还存在的问题有: 1.如何在R语言环境下,大规模语料提高运行效率? 2.如何提高词向量的精度,或者说如何衡量词向量优劣程度? 3.词向量的功能性作用还有哪些值得开发? 4.关于语义中的歧义问题如何消除? 5.词向量从"词"往"短语"的跨越? 转载请注明出处以及作者(Matt),欢迎喜欢自然语言处理一起讨论~ ---------…
原文:http://www.zhihu.com/question/21714667 4 个回答 83赞同反对,不会显示你的姓名 皮果提 刘鑫.莫教授要养猫.Starling Niohuru 等人赞同 要将自然语言交给机器学习中的算法来处理,通常需要首先将语言数学化,词向量就是用来将语言中的词进行数学化的一种方式. 一种最简单的词向量方式是 one-hot representation,就是用一个很长的向量来表示一个词,向量的长度为词典的大小,向量的分量只有一个 1,其他全为 0, 1 的位置对应…
理解张量,并将张量与线性代数的知识连接起来,我认为最重要的是理解 tensor 的两个属性:shape 和 ndim . ndim 表示张量的维度,一维张量的 ndim 值为 1,二维张量的 ndim 值为 2. shape 表示张量的形状,它的值是一个列表,列表元素个数与张量的维度相等,每一个元素值表示张量在此维度的元素个数. 举例来说: >>> tensor = torch.randn(3, 2, 2) >>> tensor tensor([[[ 1.1070, -…