转自http://blog.163.com/zhangjie_0303/blog/static/9908270620146951355834/ 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用…
转自http://blog.163.com/zhangjie_0303/blog/static/9908270620146951355834/ 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放…
凯哥java                             微信号                             kaigejava 功能介绍                             java学习资料.学习笔记.开发编程 本文主要内容: 1:查询语句where 子句使用时候优化或者需要注意的 2:like语句使用时候需要注意 3:in语句代替语句 4:索引使用或是创建需要注意 假设用户表有一百万用户量.也就是1000000.num是主键 1:对查询进行优化,应…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用…
来源于:https://blog.csdn.net/A350204530/article/details/79040277 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用…
Mysql的单张表的最大数据存储量尚没有定论,一般情况下mysql单表记录超过千万以后性能会变得很差.因此,总结一些相关的Mysql千万级大表的优化策略. 1.优化sql以及索引 1.1优化sql 1.有索引但未被用到的情况(不建议) (1)避免like的参数以通配符开头时 尽量避免Like的参数以通配符开头,否则数据库引擎会放弃使用索引而进行全表扫描. 以通配符开头的sql语句,例如:select * from t_credit_detail where Flistid like '%0'\G…
很好的一篇博客,转载 如何优化MySQL千万级大表 原文链接::https://blog.csdn.net/yangjianrong1985/article/details/102675334 千万级大表如何优化,这是一个很有技术含量的问题,通常我们的直觉思维都会跳转到拆分或者数据分区,在此我想做一些补充和梳理,想和大家做一些这方面的经验总结,也欢迎大家提出建议. 从一开始脑海里开始也是火光四现,到不断的自我批评,后来也参考了一些团队的经验,我整理了下面的大纲内容. 既然要吃透这个问题,我们势必…
MySQL千万级大表优化解决方案 非原创,纯属记录一下. 背景 无意间看到了这篇文章,作者写的很棒,于是乎,本人自私一把,把干货保存下来.:-) 问题概述 使用阿里云rds for MySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死.严重影响业务. 问题前提:老系统,当时设计系统的人大概是大学没毕业,表设计和sql语句写的不仅仅是垃圾,简直无法直视.原开发人员都已离职,到我来维护,这就是传说中的维…
问题概述 使用阿里云rds for MySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死.严重影响业务. 问题前提:老系统,当时设计系统的人大概是大学没毕业,表设计和sql语句写的不仅仅是垃圾,简直无法直视.原开发人员都已离职,到我来维护,这就是传说中的维护不了就跑路,然后我就是掉坑的那个!!! 我尝试解决该问题,so,有个这个日志. 方案概述 方案一:优化现有mysql数据库.优点:不影响现有业务…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用…
1.优化sql以及索引 1.1优化sql 1.有索引但未被用到的情况(不建议) (1)避免like的参数以通配符开头时 尽量避免Like的参数以通配符开头,否则数据库引擎会放弃使用索引而进行全表扫描. 以通配符开头的sql语句,例如:select * from t_credit_detail where Flistid like '%0'\G 这是全表扫描,没有使用到索引,不建议使用. 不以通配符开头的sql语句,例如:select * from t_credit_detail where Fl…
http://www.jb51.net/article/31868.htm 以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 复制代码 代码如下: SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 复制代码 代码如下: SELECT * FROM table ORDER BY id LIMIT 1000000, 10; 也许耗费几十秒 网上很多优化的方法是这样的 复制代码 代码如下: SELECT *…
以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 : SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 : SELECT * FROM table ORDER BY id LIMIT 1000000, 10; 也许耗费几十秒 网上很多优化的方法是这样的: SELECT * FROM table WHERE id >= (SELECT id FROM table LIMIT 1000000, 1) LIM…
一般情况下mysql上百万数据读取和插入更新是没什么问题了,但到了上千万级就会出现很慢,下面我们来看mysql千万级数据库插入速度和读取速度的调整记录吧. 1)提高数据库插入性能中心思想:尽量将数据一次性写入到Data File和减少数据库的checkpoint 操作.这次修改了下面四个配置项: 1)将 innodb_flush_log_at_trx_commit 配置设定为0:按过往经验设定为0,插入速度会有很大提高. 0: 日志缓冲每秒一次地被写到日志文件,并且对日志文件做到磁盘操作的刷新,…
NewLife.XCode是一个有15年历史的开源数据中间件,支持netcore/net45/net40,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示例代码和运行日志来进行深入分析,蕴含多年开发经验于其中,代表作有百亿级大数据实时计算项目. 开源地址:https://github.com/NewLifeX/X(求star, 938+) XCode是重度充血模型,以单表操作为核心,不支持多表关联Join,复杂查询只能在where上做文章,整个…
从一月至今,我总共归纳了三种创建千万级大表的方案,它们是: 下面是这三种方案的对比表格: # 名称 地址 主要机制 速度 1 在Oracle中十分钟内创建一张千万级别的表 https://www.cnblogs.com/xiandedanteng/p/12169527.html connect by+Insert into select 由于插入量是线性增长的,导致速度在前三种方案里最慢 2 25分钟创建一千六百万大表全记录 https://www.cnblogs.com/xiandedante…
1.Impala简介 • Cloudera公司推出,提供对HDFS.Hbase数据的高性能.低延迟的交互式SQL查询功能. • 基于Hive使用内存计算,兼顾数据仓库.具有实时.批处理.多并发等优点 • 是CDH平台首选的PB级大数据实时查询分析引擎 官网:http://www.cloudera.com/products/apache-hadoop/impala.html http://www.impala.io/index.html 下面是在基于单用户和多用户查询的时候,不同的查询分析器所使用…
simhash算法:海量千万级的数据去重 simhash算法及原理参考: 简单易懂讲解simhash算法 hash 哈希:https://blog.csdn.net/le_le_name/article/details/51615931 simhash算法及原理简介:https://blog.csdn.net/lengye7/article/details/79789206 使用SimHash进行海量文本去重:https://www.cnblogs.com/maybe2030/p/5203186…
本套SQL题的答案是由许多小伙伴共同贡献的,1+1的力量是远远大于2的,有不少题目都采用了非常巧妙的解法,也有不少题目有多种解法.本套大数据SQL题不仅题目丰富多样,答案更是精彩绝伦! 注:以下参考答案都经过简单数据场景进行测试通过,但并未测试其他复杂情况.本文档的SQL主要使用Hive SQL. 一.行列转换 描述:表中记录了各年份各部门的平均绩效考核成绩. 表名:t1 表结构: a -- 年份 b -- 部门 c -- 绩效得分 表内容: a b c 2014 B 9 2015 A 8 20…
如何优化Mysql千万级快速分页,limit优化快速分页,MySQL处理千万级数据查询的优化方案…
摘要:开发一款能支持标准数据库SQL的大数据仓库引擎,让那些在Oracle上运行良好的SQL可以直接运行在Hadoop上,而不需要重写成Hive QL. 本文分享自华为云社区<​​​​​​​​​​​​​​从零开发大数据SQL引擎>,作者:JavaEdge . 学习大数据技术的核心原理,掌握一些高效的思考和思维方式,构建自己的技术知识体系.明白了原理,有时甚至不需要学习,顺着原理就可以推导出各种实现细节. 各种知识表象看杂乱无章,若只是学习繁杂知识点,固然自己的知识面是有限的,并且遇到问题的应变…
描述 :我们现在有很多数据,分表存放,现在需要有精度条的导出.最后面有完整源码. 效果图:…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用…
一:概述 当我们设计一个系统时,需要考虑到系统的运行一段时间后,表里数据量大约有多少,如果在初期,就能估算到某几张表数据量非常庞大时(比如聊天消息表),就要把表创建好,这篇文章从创建表,增加数据,以及字段扩展,这几个方面来给出建议. 二:创建表 假如现在我们需要创建IM项目中的聊天消息表,这个表数据量大,读操作远超过写操作,我们都知道,mysql常用的数据库引擎主要有innodb,myisam,这两个数据库引擎主要区别是,innodb支持事务,支持外键,锁是行级锁(行级锁只是针对主键,非主键也会…