PCA人脸识别】的更多相关文章

人脸数据来自http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 实现代码和效果如下.由于图片数量有限(40*10),将原有图片顺序打乱进行检测. 可见马氏距离效果最佳. [以下公式和文字来自John Hany的博文 http://johnhany.net/2016/05/from-qr-decomposition-to-pca-to-face-recognition/] PCA(Principal Component…
简单的特征脸识别实验 实现特征脸的过程其实就是主成分分析(Principal Component Analysis,PCA)的一个过程.关于PCA的原理问题,它是一种数学降维的方法.是为了简化问题.在二维的坐标空间内,找到一个单位向量U,使得所有数据在U上的投影之和最大.这样就能把数据分的尽可能的开.然后把训练样本投影到这个向量U上,把测试图片也投影上去,计算这个投影与各个样本人脸投影的欧式距离,得出最小的欧式距离的的那个样本编号,就是最大概率的人脸. Eigenface算法 特征脸方法(Eig…
首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要优于基于特征的方法. 以支持向量机为代表的统计学习理论在随后被应用到了人脸识别与确认中去.但是由于算法运行效率问题,很快被一种新的算法替代了.这就是2001年康柏研究院提出的基于简单矩形特征和AdaBoost的实时人脸检测系统.该方法的主要贡献包括: 1.可以快速计算简单矩形特征作为人脸图像特征 2…
 前言 在PCA人脸识别中我们把一个人脸图片看做一个特征向量,PCA做的事情就是:找到这样一组基向量来表示已有的数据点,不仅仅是将高维度数据变成低维度数据,更能够找到最关键信息. 假设已有数据{xi},i=1,2,...,n,pca希望能够找到一组基向量使得这些数据向量在基向量上的分量(长度,投影)最大 1. 在人脸识别正文开始前,介绍PCA算法原理及数学实例: 2. 举一个pca手工计算实例如下 所以主成分是Z1 3.协方差矩阵怎么算的? 附求解协方差矩阵的一个数学实例 正文 将pca应用于人…
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可能多能反映原特征的新特征来替代他们,主成分分析因此产生.主成分分析可以看成是高维空间通过旋转坐标系找到最佳投影(几何上),生成新维度,其中新坐标轴每一个维度都是原维度的线性组合\(\theta'X\)(数学上),满足: 新维度特征之间的相关性尽可能小 参数空间\(\theta\)有界 方差尽可能大,…
代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像.最容易的方式是直接利用欧式距离计算测试集的每一幅图像与训练集的每一幅图像的距离,然后选择距离最近的图像作为识别的结果.这种直接计算距离的方式直观,但是有一个非常大的缺陷—计算量太大.如果每幅图像大小为100*100,训练集大小1000,则识别测试集中的一幅图像就需要1000*100*100的计算量,当测试集很大时,识别速度非常缓慢.…
一.思维理解 X:原始数据集: Wk:原始数据集 X 的前 K 个主成分: Xk:n 维的原始数据降维到 k 维后的数据集: 将原始数据集降维,就是将数据集中的每一个样本降维:X(i) . WkT = Xk(i): 在人脸识别中,X 中的每一行(一个样本)就是一张人脸信息: 思维:其实 Wk 也有 n 列,如果将 Wk 的每一行看做一个样本,则第一行代表的样本为最重要的样本,因为它最能反映 X 中数据的分布,第二行为次重要的样本:在人脸识别中,X 中的每一行是一个人脸的图像,则 Wk 的每一行也…
PCA算法可以使得高维数据(mxn)降到低维,而在整个降维的过程中会丢失一定的信息,也会因此而实现降噪除噪的效果,另外,它通过降维可以计算出原本数据集的主成分分量Wk矩阵(kxn),如果将其作为数据样本,则可以将其作为原来数据集特征的主特征分量,如果用在人脸识别领域则可以作为人脸数据集的特征脸具体实现降噪效果和人脸特征脸的代码如下所示: #1-1利用手写字体数据集MNIST对PCA算法进行使用和效果对比,体现PCA算法的降噪功能from sklearn import datasetsdigits…
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as np import os import cv2 # plt显示灰度图片 def plt_show(img): plt.imshow(img,cmap='gray') plt.show() # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表 def read_directory(dire…
人脸识别与特征脸(简单介绍) 什么是特征脸 特征脸(Eigenface)是指用于机器视觉领域中的人脸识别问题的一组特征向量,该方法被认为是第一种有效的人脸识别方法. PCA的具体实现思想见 [笔记]主成分分析法PCA的原理及计算 (在notebook中) 我们需要加载相应的方法fetch_lfw_people,其为一个人脸识别数据库,加载以后,就可以直接调用了,头一次使用要下载,具体情况见另一篇博客使用sklearn中的fetch_mldata的错误情况以及可能可行的解决方法,其中有说明 fro…