今天完成了机器人视觉的所有课程以及作业,确实是受益匪浅啊! 最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法. 1.基于非线性优化的相机位姿估计 之前已经在拟合一篇中,已经补完了非线性最小二乘拟合问题.Bundle Adjustment,中文是光束平差法,就是利用非线性最小二乘法来求取相机位姿,三维点坐标.在仅给定相机内部矩阵的条件下,对四周物体进行高精度重建.Bundle Adjustment的优化目标依旧是最小重复投影误差. 与利用non-linear mea…
http://blog.csdn.net/abcjennifer/article/details/7588865 http://blog.csdn.net/ximenchuixuezijin/article/details/7246663 http://blog.csdn.net/peterli_xue/article/details/7528624 给出从不同视角拍摄的,描述同一个场景的一系列图片,bundle adjustment可以根据所有点在图像中的投影作为标准,同时提炼出描述场景结构的…
机器人感知是UPNN机器人专项中的最后一门课程,其利用视觉方法来对环境进行感知.与之前提到的机器人视觉不同,机器人感知更侧重于对环境物体的识别与检测.与计算机视觉不同,机器人视觉所识别的物体往往不需要高精度测量,物体也有明显特征.机器人感知最为典型的应用是对环境的感知 —— SLAM,同步定位与地图构建.如果说机器人视觉解决了where am I的问题,那么Robotic Perception 面对的是Who is it. 1.1D Gaussian 感知要解决的是对环境识别的问题,沿着PGM的…
结合 bundle adjustment原理(1) 和 Levenberg-Marquardt 的 MATLAB 代码 两篇博客的成果,调用MATLAB R2016a中 bundleAdjustment函数的测试程序中的数据的一部分,即“ load('sfmGlobe'); ” 里头的数据,其中17,18,19,20号点的在5个相机 中都能看到,使用这4个点以及5个相机中前面3个相机的数据.假设4个点在这3个相机中都能看到. 数据预处理 clear all;clc;close all; % K…
那些光束平差的工具,比如SBA.SSBA之类的虽然好,然而例子和教程都不够多且不够详细,让初学者难以上手. 要传入的参数虽然有解释,然而却也不是十分清楚其含义,具体要怎么生成,生成为什么形式. 我在折腾了一段时间后也还是没成功,逼得我自己找这方面的资料学习,想要更了解bundle adjustment的原理. 想着干脆自己写一个简单的bundle框架练练手,就算写不成也将有助于让这些工具正常工作起来. 三维重建的最后一步是光束平差,又称bundle adjustment,本文介绍一下bundle…
转自菠菜僵尸 http://www.cnblogs.com/shepherd2015/p/5848430.html bundle adjustment原理(1) 那些光束平差的工具,比如SBA.SSBA之类的虽然好,然而例子和教程都不够多且不够详细,让初学者难以上手. 要传入的参数虽然有解释,然而却也不是十分清楚其含义,具体要怎么生成,生成为什么形式. 我在折腾了一段时间后也还是没成功,逼得我自己找这方面的资料学习,想要更了解bundle adjustment的原理. 想着干脆自己写一个简单的b…
对于机器人感知任务而言,经常需要预判物体的运动,保证机器人在物体与自身接触之前进行规避.比如无人机与障碍物的碰撞,足球机器人判断足球的位置.预判的前提是对当前状态进行准确的估计,比如足球的速度,障碍物靠近的速度.一般认为,测量是存在误差的 —— 眼见未必为实. 1.物体的运动学模型 物体的运动学模型使用状态向量来表达.以2维空间的质点运动为例,物体的运动学模型可以表达为 x = [ px py vx vy ]' .其中 px py 表示物体的位置,vx vy 表示物体的速度.如果能够准确估计物体…
终于完成了Robotic SLAM 所有的内容了.说实话,课程的内容比较一般,但是作业还是挺有挑战性的.最后一章的内容是 Location. Location 是 Mapping 的逆过程.在给定map的情况下,需要求取机器人的位姿. 1.Location 的意义 在机器人导航任务中,location 可以告诉机器人目前位置,以方便闭环控制或者轨迹规划.一般情况下,Location 可以通过GPS,WIFI 等方式完成.GPS的定位精度在3.5米左右,WIFI则大于10米.对于机器人.无人汽车而…
对于移动机器人来说,最吸引人的莫过于SLAM,堪称Moving Robot 皇冠上的明珠.Perception 服务于 SLAM,Motion Plan基于SLAM.SLAM在移动机器人整个问题框架中,起着最为核心的作用.为了专注于Mapping,此章我们假设 Location 是已知的. 1.Metric Map 轨迹规划任务是再Metric Map的基础上完成的.当然,层次最高的是语意图,语意图是未来研究的热点方向.获取Metric Map 的难度最大之处在于:1.传感器噪声(May be…
IMU模型和运动积分 $R_{\tiny{WB}} \left( t +\Delta{t} \right) = R_{\tiny{WB}} \left( t \right) Exp\left( \int_{t} ^{t+\Delta{t}} {}_{\tiny{B}} \omega_{\tiny{WB}} \left( \tau \right) d\tau   \right)$ ${}_{\tiny{W}}V \left(t+\Delta{t} \right) = {}_{\tiny{W}}V\…