Code: #include <cstdio> #include <cstring> #include <algorithm> #define setIO(s) freopen(s".in","r",stdin) #define N 60 #define ll long long #define mod p using namespace std; int k,r; long long n,p; struct matrix{ lo…
4870: [Shoi2017]组合数问题 题意:求 \[ \sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p \] \(n \le 10^9, 0\le r < k \le 50\) 组合数推了一下,有一些有趣的性质但是并不好做 想到了从意义方面考虑,但是没有深入,去看了题解 n大k小,一副矩乘的样子 就是求"n个物品取模k余r个的方案数" 因为取的个数模k,变得很有意思,可以把组合数的递推式矩乘了... #include <iostream…
题目大意:用k种字符构建两个长度为n的字符串(每种字符有无限多个),要求对应位置字符相同的连续子串最长长度为m,问方法数. 其中k,n,m是输入,n(1<=n<=1000000000), m(1<=m<=10), k(1<=k<=26). 对题目解释更详细点儿,如下两串 123456 223466 这个的“对应位置字符相同的连续子串最长长度”是3,是字符串“234”. 解题思路,这题一看就是DP或者组合数学,但是不会组合数学,只能DP了dp[i][j]表示前i个字符,最…
注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm…
题目传送门 题目大意:计算数列a的第n项,其中: \[a[1] = a[2] = a[3] = 1\] \[a[i] = a[i-3] + a[i - 1]\] \[(n ≤ 2 \times 10^9)\] 一般的递推是O(n)的,显然时间和空间都不能承受. 由于每一步递推都是相同的.这句话包含了2个层面:首先,递推式是相同的:其次,递推的条件也要是相同的.综合来说,每一步的递推都是相同的.这是应用矩阵加速递推的充分条件. 那么怎么进行矩阵加速呢?我们首先观察,第\(i\)项和哪些项有关? 与…
Description Solution 考虑这个式子的组合意义: 从 \(n*k\) 个球中取若干个球,使得球的数量 \(\%k=r\) 的方案数 可以转化为 \(DP\) 模型,设 \(f[i][j]\) 表示前 \(i\) 个步,取得球的数量 \(\%k=j\) 的方案数 \(f[i][j]=f[i-1][j]+f[i-1][j-1]\) 发现这个东西就是杨辉三角(胡话,此题无关) 这样就可以做 \(O(k^3log)\) 了,并且可以过了 网上还有一种做法: 设 \(f[i*2][a+b…
BZOJ_2738_矩阵乘法_整体二分 Description 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. Input 第一行两个数N,Q,表示矩阵大小和询问组数: 接下来N行N列一共N*N个数,表示这个矩阵: 再接下来Q行每行5个数描述一个询问:x1,y1,x2,y2,k表示找到以(x1,y1)为左上角.以(x2,y2)为右下角的子矩形中的第K小数. Output 对于每组询问输出第K小的数. Sample Input 2 2 2 1 3 4 1 2 1 2 1…
BZOJ_1925_[Sdoi2010]地精部落_递推 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数. 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰.位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边). 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷. 地精们有一个…
求 $f[i][j]=∑f[i−1][k]$,$'a'<=k<='z'$ . 用矩阵乘法转移一波即可. 竟然独自想出来了QAQ Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #define maxn 30 #define mod 1000000007 #define ll long long using namespace std; char…
题意:求解—— $$(C^{r}_{nk}+C^{r+k}_{nk}+C^{r+2k}_{nk}+...+C^{r+(n-1)k}_{nk}+...)mod(P)$$ 其中$C^{m}_{n}$表示从n中选m个的方案数 保证$1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^{30} − 1$ http://www.lydsy.com/JudgeOnline/problem.php?id=4870 一看r,k很小就很自然地想到矩阵快速幂: 然后枚举nk 一开始打算横…