封装TensorFlow神经网络】的更多相关文章

为了参加今年的软件杯设计大赛,这几个月学习了很多新知识.现在大赛的第二轮作品优化已经提交,开始对这四个月所学知识做一些总结与记录. 用TensorFlow搭建神经网络.TensorFlow将神经网络的进行封装,使得深度学习变得简单已用,即使是不懂的深度学习算法原理的人都可以很容易的搭建各种神经网络的模型.我为了搭建神经网络更加方便,对TensorFlow做了自己的封装. 神经网络的封装代码: class NN: ''' shape:训练集数据的维度,shape[0]表示输入数据维度,shape[…
TensorFlow神经网络集成方案 创造张力流create_tensorflow_neuropod 将TensorFlow模型打包为neuropod包. create_tensorflow_neuropod( neuropod_path, model_name, node_name_mapping, input_spec, output_spec, frozen_graph_path = None, graph_def = None, init_op_names = [], input_ten…
1.知识点 """ 1.基础知识: 1.神经网络结构:1.输入层 2.隐含层 3.全连接层(类别个数=全连接层神经元个数)+softmax函数 4.输出层 2.逻辑回归:只能解决二分类问题 3.线性回归:只能用于预测 4.softmax:有多少类别,就会有多少个输出 5.信息熵:信息熵越大,不确定性越大,信息熵越小,则不确定小,属于的类别也更加清晰 6.softmax公式: Si = e^i / (e^1+....+e^j) ,用于计算概率值. 特点:所有类别概率值相加等于1…
原文链接:http://www.cnblogs.com/learn-to-rock/p/5677458.html 偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网络自动创造音乐. 白话就是:可以用一些音乐的风格来制作模型,然后用训练出的模型对新的音乐进行加工从而创造出新的音乐. 花了半天时间捣鼓终于有了成果,挺开心的,同时也把这半天的经验拿来分享,能让大家节约一些时间也算是我对社会做出的一点贡献吧. 再次感受 Google 的黑科技 希望大家能喜欢我的Chi…
Tensorflow让神经网络自动创造音乐 前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐.听起来好好玩有木有!作为一个Coldplay死忠粉,第一想法就是自动生成一个类似Coldplay曲风的音乐,于是,开始跟着Github上的教程(项目的名称:Project Magenta)一步一步做,弄了三天,最后的生成的音乐在这里(如果有人能告诉我怎么在博客里插入音乐请赶快联系我!谢谢!) 第一首:Magenta Melody Result1.mp3 http://…
TensorFlow运行方式.加载数据.定义超参数,构建网络,训练模型,评估模型.预测. 构造一个满足一元二次函数y=ax^2+b原始数据,构建最简单神经网络,包含输入层.隐藏层.输出层.TensorFlow学习隐藏层.输出层weights.biases.观察训练次数增加,损失值变化. 生成.加载数据.方程y=x^2-0.5.构造满足方程的x.y.加入不满足方程噪声点. import tensor flow as tf import bumpy as np # 构造满中一元二次方程的函数 x_d…
TensorFlow 激活函数 激活操作提供用于神经网络的不同类型的非线性.这些包括平滑的非线性(sigmoid,tanh,elu,softplus,和softsign),连续的,但不是到处可微函数(relu,relu6,crelu和relu_x),和随机正规化(dropout). 所有激活操作应用于分量,并产生与输入张量相同形状的张量. tf.nn.relu tf.nn.relu6 tf.nn.crelu tf.nn.elu tf.nn.softplus tf.nn.softsign tf.n…
TensorFlow 是一个用于机器学习应用程序的开源库.它是谷歌大脑的第二代系统,在取代了近源的 DistBelief 之后,被谷歌用于研究和生产应用.TensorFlow 提供了很多种语言接口,包括 Python.C++.Go.Java 和 C 等等.考虑到普遍性和易学性,本文将采用 Python 版本,并且会简单介绍下 TensorFlow 的安装和它的一些低阶 API,以及从头开始构建基于真实数据集的前馈神经网络. 在更为复杂的应用场景下,神经网络的训练时长往往是一种特别需要克服的因素.…
本实验通过建立一个含有两个隐含层的BP神经网络,拟合具有二次函数非线性关系的方程,并通过可视化展现学习到的拟合曲线,同时随机给定输入值,输出预测值,最后给出一些关键的提示. 源代码如下: # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt plotdata = { "batchsize":[], "loss":[] } d…
激活函数是人工神经网络的一个极其重要的特征.它决定一个神经元是否应该被激活,激活代表神经元接收的信息与给定的信息有关. 激活函数对输入信息进行非线性变换. 然后将变换后的输出信息作为输入信息传给下一层神经元. 激活函数的作用 当我们不用激活函数时,权重和偏差只会进行线性变换.线性方程很简单,但解决复杂问题的能力有限.没有激活函数的神经网络实质上只是一个线性回归模型.激活函数对输入进行非线性变换,使其能够学习和执行更复杂的任务.我们希望我们的神经网络能够处理复杂任务,如语言翻译和图像分类等.线性变…