题意 https://www.luogu.com.cn/problem/P2260 思路 具体思路见下图: 注意这个模数不是质数,不能用快速幂来求逆元,要用扩展gcd. 代码 #include<bits/stdc++.h> using namespace std; #define inf 0x3f3f3f3f #define ll long long const int N=200005; const int mod=19940417; const double eps=1e-8; const…
题意 出题人吃华 莱 士拉肚子了,心情不好,于是出了一道题面简单的难题. 共 T T T 组数据,对正整数 n n n 求 F ( n ) = ∑ i = 1 n μ 2 ( i ) i F(n)=\sum_{i=1}^n \mu^2(i)i F(n)=i=1∑n​μ2(i)i 对 2 64 2^{64} 264 取模的结果. n ≤ 1 0 14 , T ≤ 100. n\leq 10^{14},T\leq100. n≤1014,T≤100. 题解 莫比乌斯函数的平方,说明我们求的是 1 ∼…
题面 给定一棵 n n n 个结点的无根树,每条边的边权均为 1 1 1 . 树上标记有 m m m 个互不相同的关键点,小 A \tt A A 会在这 m m m 个点中等概率随机地选择 k k k 个不同的点放上小饼干.你想知道,经过有小饼干的 k k k 个点的最短路径长度的期望是多少.注意,你可以任意选取起点和终点,路径也可以经过重复的点或重复的边. 2 ≤ k ≤ m ≤ n ≤ 2000 2\leq k\leq m\leq n\leq2000 2≤k≤m≤n≤2000 . m ≤ 3…
LOJ 思路 发现既有大于又有小于比较难办,使用容斥,把大于改成任意减去小于的. 于是最后的串就长成这样:<<?<?<??<<<?<.我们把一段连续的<称作一条链.如果枚举大于号变成什么,那么最后的答案很容易算,就是\(\frac {n!}{\prod len!}\). \(dp_i\)表示前\(i\)个位置分成若干条链,带上容斥系数的方案数. \(dp_i\)从\(dp_j\)转移,即\([j+1,i]\)这些位置用<连接,并且需要满足\(s_…
题面 0 题目背景 [ 数   据   删   除 ] _{^{[数\,据\,删\,除]}} [数据删除]​ 1 题目描述 在执行任务时,收集到了 n n n 份能源,其中第 i i i 份的能量值是 w i w_i wi​ ,她决定将它们分成恰好 k k k 组带回基地,每一组都要有至少 1 \tt1 1 份能源. 每一组能源会对运输设备产生负荷值,若该组有 x x x 份能源,这 x x x 份能源能量值之和为 y y y , 则产生的负荷值为 x × y x × y x×y . 每种分组方…
(2:00)OID:"完了,蓝屏了!"(代码全消失) 众人欢呼 OID:开机,"原题测试--" (30min later)OID 开始传统艺能: " ∗ ∗ ∗ *** ∗∗∗又AK了,承认自己强很难吗?--狗把人吃!--" 众人大汗,感到不妙-- 众所周知,如果一个选手在比赛时提前码完了,AK 了,他就会觉得这场比赛简单,推己及人,觉得别人都 AK 了,于是自以为揭破真相似的对别人说:"你 AK 了",这是传统艺能.因此,大…
Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5526    Accepted Submission(s): 2209 Problem Description Given a number N, you are asked to count the number of integers between A and B…
传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)\).所以本质上是求后面那个式子,设\(f[i]\)表示\(i\)这个约数作为\(gcd\)的次数,然后转移时考虑容斥,\(n/i*m/i\)表示含有\(i\)这个约数的数字个数,再减去\(f[i*2],f[…
题面(加密) 又考没学的姿势……不带这么玩的…… 考场上打了个模拟 骗到30分滚粗了 稍加思考(滑稽)可将题面转化为: 求一个最大的$d$,使得 $\sum \limits _{i=1}^n {(\left \lceil \frac{a_i}{d} \right \rceil *d-a_i)} \leq k$ 移项可得 $\sum \limits _{i=1}^n {\left \lceil \frac{a_i}{d} \right \rceil *d} \leq k+\sum \limits…
题目链接 戳我 题意简述 你有一个n+1个数的序列,都是1~n,其中只有一个有重复,求每个长度的本质不同的子序列个数.\(mod 1e9+7\). sol 说起来也很简单,设相同的数出现的位置为\(l\)和\(r\).那么除了去掉\(r\)之后\(n\)个数的贡献,还有算上\(r\)的贡献,然后就可以了.原本\(n\)个的贡献是\(\binom{n}{i}\),加上\(r\)的贡献的话要满足在\([l,r-1]\)之间至少要选一个数,然后还要选\(r\),那么考虑将原序列(去除\(r\))分成三…