BFGS算法(转载)】的更多相关文章

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5) L-BFGS 算法 作者: peghoty 出处: http://blog.csdn.net/itplus/…
拟牛顿法/Quasi-Newton,DFP算法/Davidon-Fletcher-Powell,及BFGS算法/Broyden-Fletcher-Goldfarb-Shanno 转载须注明出处:http://www.codelast.com/ 在最优化领域,有几个你绝对不能忽略的关键词:拟牛顿.DFP.BFGS.名字很怪,但是非常著名.下面会依次地说明它们分别“是什么”,“有什么用” 以及 “怎么来的”. 但是在进入正文之前,还是要先提到一个概念上的区别,否则将影响大家的理解:其实DFP算法.B…
A* 寻路算法 转载地址:http://www.cppblog.com/christanxw/archive/2006/04/07/5126.html 原文地址: http://www.gamedev.net/reference/articles/article2003.asp 概述 虽然掌握了 A* 算法的人认为它容易,但是对于初学者来说, A* 算法还是很复杂的. 搜索区域(The Search Area) 我们假设某人要从 A 点移动到 B 点,但是这两点之间被一堵墙隔开.如图 1 ,绿色…
一.牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f^{'}(x_0)} \] 得牛顿法迭代公式: \[x^{k+1}=x^k-\frac{f(x^k)}{f^{'}(x^k)} \] 对于最优化问题 令导数等于零,得最优解,所以迭代公式为 \[x^{k+1}=x^k-\fra…
转载链接:http://blog.csdn.net/itplus/article/details/21897443 这里,式(2.38)暂时不知如何证出来,有哪位知道麻烦给个思路.…
 转载请联系原文作者 需要获得授权,非法转载 原文作者将享受侵权诉讼 文/不会停的蜗牛(简书作者)原文链接:http://www.jianshu.com/p/55a67c12d3e9 通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普.以后有时间再对单个算法做深入地解析. 今天的算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素…
在最优化算法研究中按时间先后顺序出现了许多算法包括如下几种,这里介绍下他们的全称和英文名称: 1.最速下降法(Gradient descent) 2.牛顿法(Newton method) 3. 共轭梯度法(Conjugate Gradient) 4.拟牛顿法(Quasi-Newton),其有很多变种: (1)DFP(Davidon.Fletcher.Powell三人的首字母) (2)BFGS(布罗依丹(Broy-den,C. G.)以及弗莱彻(Fletcher , R. ) ,戈德福布(Gold…
1.介绍 BloomFilter(布隆过滤器)是一种可以高效地判断元素是否在某个集合中的算法. 在很多日常场景中,都大量存在着布隆过滤器的应用.例如:检查单词是否拼写正确.网络爬虫的URL去重.黑名单检验,微博中昵称不能重复的检测.在工业界中,Google著名的分布式数据库BigTable也用 了布隆过滤器来查找不存在的行或列,以减少磁盘查找的IO次数:Google Chrome浏览器使用BloomFilter来判断一个网站是否为恶意网站. 对于以上场景,可能很多人会说,用HashSet甚至简单…
数据结构图之三(最短路径--迪杰斯特拉算法)   [1]最短路径 最短路径?别乱想哈,其实就是字面意思,一个带边值的图中从某一个顶点到另外一个顶点的最短路径. 官方定义:对于内网图而言,最短路径是指两顶点之间经过的边上权值之和最小的路径. 并且我们称路径上的第一个顶点为源点,最后一个顶点为终点. 由于非内网图没有边上的权值,所谓的最短路径其实是指两顶点之间经过的边数最少的路径. 别废话了!整点实际的哈,你能很快计算出下图中由源点V0到终点V8的最短路径吗? [2]迪杰斯特拉算法 迪杰斯特拉算法是…
一直记不住这些算法的推导,所以打算详细点写到博客中以后不记得就翻阅自己的笔记. 泰勒展开式 最初的泰勒展开式,若  在包含  的某开区间(a,b)内具有直到n+1阶的导数,则当x∈(a,b)时,有: 令可得到如下式子: 泰勒展开式,我的理解就有两个式子.上述的是当x是标量时的展开式,当x是多元时可以根据以下公式进行推导: 舍去二阶项以上的项可以得到: 参考文献: 1. http://baike.baidu.com/link?url=E-D1MzRCjDi8qrlh2Cn64fwtz703bg-h…
以下的文章来至http://blog.csdn.net/debugconsole/article/details/8165530,感激这位博主的翻译,可惜图片被和谐了,所以为方便阅读,我重新把图片贴上方便阅读 注:图片来至原文 ------------------------------------------------------以下是内容-------------------------------------------------------------------- MulinB按:…
转自:http://blogread.cn/it/article/4088?f=wb1 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论. 文章主要内容分为三个部分. 第一部分主要从数据结…
本文系转载子ITPUB,如果有侵犯您权益的地方,烦请及时的告知与我,我即刻将停止侵权行为: 网址:http://www.itpub.net/thread-1020586-1-1.html http://www.itpub.net/thread-1020772-3-1.html http://www.itpub.net/thread-1020712-1-1.html http://stackoverflow.com/questions/12221047/oracle-sql-hierarchica…
转自:https://blog.csdn.net/u010626937/article/details/72896144#commentBox 1.Python的机器学习包sklearn中也包含了感知机学习算法,我们可以直接调用,因为感知机算法属于线性模型,所以从sklearn.linear_model中import下面给出例子. import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import…
Rsync文件同步的核心算法 文章出处:http://coolshell.cn/articles/7425.html#more-7425 rsync是unix/linux下同步文件的一个高效算法,它能同步更新两处计算机的文件与目录,并适当利用查找文件中的不同块以减少数据传输.rsync中一项与其他大部分类似程序或协定中所未见的重要特性是镜像是只对有变更的部分进行传送.rsync可拷贝/显示目录属性,以及拷贝文件,并可选择性的压缩以及递归拷贝.rsync利用由Andrew Tridgell发明的算…
1.标记-清除算法 标记-清除(Mark-Sweep)算法是一种基础的收集算法. 1.算法思路 "标记-清除"算法,分为两个阶段: (A).标记 首先标记出所有需要回收的对象: 标记过程如<Java虚拟机垃圾回收(一) 基础>"2-4.判断对象生存还是死亡"中所述--分为两个标记过程(详细请参考前文): (1).第一次标记 在可达性分析后发现对象到GC Roots没有任何引用链相连时,被第一次标记: 并且进行一次筛选:此对象是否必要执行finalize(…
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支 支持度和置信度 严格地说Apriori和FP-Tree都是寻找频繁项集的算法,频繁项集就是所谓的“支持度”比较高的项集,下面解释一下支持度和置信度的概念. 设事务数据库为: A E F G A F G A B E F G E F G 则{A,F,G}的支持度数为3,支持度为3/4. {F,G}的支持度数为4,支持度为4/4. {A}的支持度数为…
package com.zuidaima.core.util; import java.util.Random; public class RandomUtil { public static final String ALLCHAR = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; public static final String LETTERCHAR = "abcdefghijkll…
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用.如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容…
转自 https://blog.csdn.net/itplus/article/details/21897443…
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下.下面将无约束项优化算法的细节进行描述.为了尊重别人的劳动成果,本文的出处是:http://blog.csdn.net/itplus/article/details/21896453 . 从这里我们可以看出:要想迭代出Xk+1,就只需要计算Dk+1即可.DFP算法是对Dk+1的一个近似…
优化算法-BFGS BGFS是一种准牛顿算法, 所谓的"准"是指牛顿算法会使用Hessian矩阵来进行优化, 但是直接计算Hessian矩阵比较麻烦, 所以很多算法会使用近似的Hessian, 这些算法就称作准牛顿算法(Quasi Newton Algorithm). 1. 牛顿算法(Newton Algorithm) 牛顿算法考虑了函数的二阶单数, 是一种二阶优化方法, 并且是所有其他二阶优化方法的鼻祖. 作为对比, 梯度下降(Gradient Descent)只考虑了函数的一阶导数…
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5) L-BFGS 算法 作者: peghoty 出处: http://blog.csdn.net/itplus/…
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5) L-BFGS 算法 作者: peghoty 出处: http://blog.csdn.net/itplus/…
声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 学习方法         条件随机场模型实际上是定义在时序数据上的对数线性模型,其学习方法包括极大似然估…
数据.特征和数值优化算法是机器学习的核心,而牛顿法及其改良(拟牛顿法)是机器最常用的一类数字优化算法,今天就从牛顿法开始,介绍几个拟牛顿法算法.本博文只介绍算法的思想,具体的数学推导过程不做介绍. 1. 牛顿法 牛顿法的核心思想是”利用函数在当前点的一阶导数,以及二阶导数,寻找搜寻方向“(回想一下更简单的梯度下降法,她只用了当前点一阶导数信息决定搜索方向). 牛顿法的迭代公式是(稍微有修改,最原始的牛顿法\(\gamma=1\): \[{{\bf{x}}_{n + 1}} = {{\bf{x}}…
牛顿法 考虑如下无约束极小化问题: $$\min_{x} f(x)$$ 其中$x\in R^N$,并且假设$f(x)$为凸函数,二阶可微.当前点记为$x_k$,最优点记为$x^*$. 梯度下降法用的是一阶偏导,牛顿法用二阶偏导.以标量为例,在当前点进行泰勒二阶展开: $$\varphi(x)=f(x_k)+f'(x_k)(x-x_k)+\frac{1}{2}f''(x_k)(x-x_k)^2$$ 极小值点满足$\varphi'(x)=0$,求得: $$x_{k+1}=x_k-\frac{f'(x…
最小生成树:Prim算法 最小生成树 给定一无向带权图.顶点数是n,要使图连通仅仅需n-1条边.若这n-1条边的权值和最小,则称有这n个顶点和n-1条边构成了图的最小生成树(minimum-cost spanning tree). Prim算法 Prim算法是解决最小生成树的经常使用算法. 它採取贪心策略,从指定的顶点開始寻找最小权值的邻接点.图G=<V,E>.初始时S={V0}.把与V0相邻接.且边的权值最小的顶点增加到S. 不断地把S中的顶点与V-S中顶点的最小权值边增加,直到全部顶点都已…
一.BFGS算法 算法思想如下: Step1   取初始点,初始正定矩阵,允许误差,令: Step2   计算: Step3   计算,使得 : Step4    令: Step5    如果,则取为近似最优解:否则转下一步: Step6    计算 ,, 令,转Step2. 优点: 1.不用直接计算Hessian矩阵: 2.通过迭代的方式用一个近似矩阵代替Hessian矩阵的逆矩阵. 缺点: 1.矩阵存储量为,因此维度很大时内存不可接受: 2.矩阵非稀疏会导致训练速度慢. 二.L-BFGS算法…
数据结构和算法(转载) 原文地址:  https://blog.csdn.net/s1070/article/details/51174725 1.使对象可以像数组一样进行foreach循环,要求属性必须是私有.(Iterator模式的PHP5实现,写一类实现Iterator接口)(腾讯) <?php class Test implements Iterator{ private $item = array('id'=>1,'name'=>'php'); public function…