51Nod 1069 Nim游戏 (位运算)】的更多相关文章

1069 Nim游戏   有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后谁能赢得比赛. 例如:3堆石子,每堆1颗.A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子.   Input 第1行:一个数N,表示有N堆石子.(1 <= N <= 1000) 第2 - N + 1行:N堆石子的数量.(1 <= A[i] <= 1…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1069 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后谁能赢得比赛. 例如:3堆石子,每堆1颗.A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子.   Input 第1行:一个数N,表示有N堆石子…
有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后谁能赢得比赛. 例如:3堆石子,每堆1颗.A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子.   Input 第1行:一个数N,表示有N堆石子.(1 <= N <= 1000) 第2 - N + 1行:N堆石子的数量.(1 <= A[i] <= 10^9) Output 如…
首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同的石子数. 再看另外一个奇异局势(1,2,3): ①如果先手拿第一个石子堆,那么后手可以形成(0,2,2)的局势,先手必败. ②如果先手拿第二个石子堆的1个石子,那么后手可以形成(1,1,0)的局势,先手必败. ③如果先手拿第二个石子堆的2个石子,那么后手可以形成(1,0,1)的局势,先手必败. 后…
1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后谁能赢得比赛. 例如:3堆石子,每堆1颗.A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子. Input 第1行:一个数N,表示有N堆石子.(1 <= N <= 1000) 第2 - N + 1行:N堆石子的数量…
位运算.. .. Revenge of Nim II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 229    Accepted Submission(s): 79 Problem Description Nim is a mathematical game of strategy in which two players take…
分析: a1 xor a2 xor a3 ... xor an !=0 则为必胜态 a1 xor a2 xor a3 ... xor an ==0 则为必败态 也就是说只要计算异或值,如果非零则A赢,否则B赢 证:首先从xor为零的状态取走至少一颗石子,xor就一定会变成非零.因此,通过取石子,必败态只能转移为必胜态 其次,对于一个必胜态而言,观察xor的二进制表示最高位的1,选取石子数的二进制表示对应位也为1的 某堆石子.只要从中取走使得该位变为0,并且使得其余xor中的1也反转的数量的石子,…
1069 Nim游戏  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后谁能赢得比赛. 例如:3堆石子,每堆1颗.A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子. Input 第1行:一个数N,表示有N堆石子.(1 <= N <= 100…
翻转游戏(flip) [问题描述] 翻转游戏是在一个 4 格×4 格的长方形上进行的,在长方形的 16 个格上每 个格子都放着一个双面的物件.每个物件的两个面,一面是白色,另一面是黑色, 每个物件要么白色朝上,要么黑色朝上,每一轮你只能翻 3 至 5 个物件,从而由 黑到白的改变这些物件上面的颜色,反之亦然.每一轮被选择翻转的物件遵循以 下规则: 1.从 16 个物件中任选一个. 2.翻转所选择的物件的同时,所有与它相邻的左方物件.右方物件.上方物件 和下方物件(如果有的话),都要跟着翻转. 以…
记录dalao的位运算骚操作 根据百度百科 ,生命游戏,简称为生命,是英国数学家约翰·何顿·康威在 1970 年发明的细胞自动机. 给定一个包含 m × n 个格子的面板,每一个格子都可以看成是一个细胞.每个细胞都具有一个初始状态:1 即为活细胞(live),或 0 即为死细胞(dead).每个细胞与其八个相邻位置(水平,垂直,对角线)的细胞都遵循以下四条生存定律: 如果活细胞周围八个位置的活细胞数少于两个,则该位置活细胞死亡: 如果活细胞周围八个位置有两个或三个活细胞,则该位置活细胞仍然存活:…