关键词提取1-C#】的更多相关文章

很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank [1]. 1. 介绍 TextRank由Mihalcea与Tarau于EMNLP'04提出来,其思想非常简单:通过词之间的相邻关系构建网络,然后用PageRank迭代计算每个节点的rank值,排序rank值即可得到关键词.PageRank本来是用来解决网页排名的问题,网页之间的链接关系即为图的边,迭代…
HanLP 关键词提取算法分析 参考论文:<TextRank: Bringing Order into Texts> TextRank算法提取关键词的Java实现 TextRank算法自动摘要的Java实现这篇文章中作者大概解释了一下TextRank公式 1. 论文 In this paper, we introduce the TextRank graphbased ranking model for graphs extracted from natural language texts…
今天我来弄一个简单的关键词提取的代码 文章内容关键词的提取分为三大步: (1) 分词 (2) 去停用词 (3) 关键词提取 分词方法有很多,我这里就选择常用的结巴jieba分词:去停用词,我用了一个停用词表.具体代码如下: import jieba import jieba.analyse #第一步:分词,这里使用结巴分词全模式 text = '''新闻,也叫消息,是指报纸.电台.电视台.互联网经常使用的记录社会.传播信息.反映时代的一种文体,具有真实性.时效性.简洁性.可读性.准确性的特点.新…
很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank. 1. 介绍 TextRank由Mihalcea与Tarau于EMNLP'04 [1]提出来,其思想非常简单:通过词之间的相邻关系构建网络,然后用PageRank迭代计算每个节点的rank值,排序rank值即可得到关键词.PageRank本来是用来解决网页排名的问题,网页之间的链接关系即为图的边,迭代…
看一个博主(亚当-adam)的关于hanlp关键词提取算法TextRank的文章,还是非常好的一篇实操经验分享,分享一下给各位需要的朋友一起学习一下! TextRank是在Google的PageRank算法启发下,针对文本里的句子设计的权重算法,目标是自动摘要.它利用投票的原理,让每一个单词给它的邻居(术语称窗口)投赞成票,票的权重取决于自己的票数.这是一个“先有鸡还是先有蛋”的悖论,PageRank采用矩阵迭代收敛的方式解决了这个悖论.本博文通过hanlp关键词提取的一个Demo,并通过图解的…
HanLP 关键词提取算法分析详解 l 参考论文:<TextRank: Bringing Order into Texts> l TextRank算法提取关键词的Java实现 l TextRank算法自动摘要的Java实现这篇文章中作者大概解释了一下TextRank公式 1. 论文 In this paper, we introduce the TextRank graphbased ranking model for graphs extracted from natural languag…
脱离语料库,仅对单篇文档提取 (1) pageRank算法:有向无权,平均分配贡献度 基本思路: 链接数量:一个网页越被其他的网页链接,说明这个网页越重要 链接质量:一个网页被一个越高权值的网页链接,表明这个网页越重要 思路:将每个网页初始得分为1 通过多次迭代对每个网页进行收敛 若收敛,则收敛时的得分为最终得分,否则设置最大迭代次数 公式: In(Vi)为Vi的入链集合,Out(Vj)为Vj的出链集合,|Out(Vj)|为出链数量 每个网页将自身的分数平均贡献给每个出链,Vj的贡献度:S(Vj…
1. NLP 走近自然语言处理 概念 Natural Language Processing/Understanding,自然语言处理/理解 日常对话.办公写作.上网浏览 希望机器能像人一样去理解,以人类自然语言为载体的文本所包含的信息,并完成一些特定任务 内容中文分词.词性标注.命名实体识别.关系抽取.关键词提取.信息抽取.依存分析.词嵌入…… 应用篇章理解.文本摘要.情感分析.知识图谱.文本翻译.问答系统.聊天机器人…… 2. NLP 使用jieba分词处理文本,中文分词,关键词提取,词性标…
关键词提取自动摘要相关开源项目 GitHub - hankcs/HanLP: 自然语言处理 中文分词 词性标注 命名实体识别 依存句法分析 关键词提取 自动摘要 短语提取 拼音 简繁转换https://github.com/hankcs/HanLP 文章或博客的自动摘要(自动简介) - 开源中国社区http://www.oschina.net/code/snippet_1180874_23950 Python实现提取文章摘要的方法_python_脚本之家http://www.jb51.net/a…
今天要介绍的TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要.因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法. 1.PageRank算法 PageRank设计之初是用于Google的网页排名的,以该公司创办人拉里·佩奇(Larry Page)之姓来命名.Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一.PageRank通过互联网中的超链接关系来确定一个网页的排名,其公式是通过一种…
1.文本关键词抽取的种类: 关键词提取方法分为有监督.半监督和无监督三种,有监督和半监督的关键词抽取方法需要浪费人力资源,所以现在使用的大多是无监督的关键词提取方法. 无监督的关键词提取方法又可以分为三类:基于统计特征的关键词抽取.基于词图模型的关键词抽取和基于主题模型的关键词抽取. 2.基于统计特征的有个最简单的方法,利用TF-IDF效果不错 对于未登录词其IDF值的常用计算以及TF-IDF的计算 3.TD-IDF的主要思想以及优缺点 主要思想: tf-idf 模型的主要思想是:如果词w在一篇…
本示例的过程是: 1. 音频转文本 2. 利用文本获取情感倾向分析结果 3. 利用文本获取关键词提取 首先是讯飞的语音识别模块.在这里可以找到非实时语音转写的相关文档以及 Python 示例.我略作了改动,让它可以对不同人说话作区分,并且作了一些封装. 语音识别功能 weblfasr_python3_demo.py 文件: #!/usr/bin/env python # -*- coding: utf-8 -*- """ 讯飞非实时转写调用demo(语音识别) "&…
一.前言 随着互联网的发展,数据的海量增长使得文本信息的分析与处理需求日益突显,而文本处理工作中关键词提取是基础工作之一. TF-IDF与TextRank是经典的关键词提取算法,需要掌握. 二.TF-IDF 2.1.TF-IDF通用介绍 TF-IDF,全称是 Term Frequency - inverse document frequency,由两部分组成---词频(Term Frequency),逆文档频率(inverse document frequency). TF-IDF=词频(TF)…
C# 中文分词算法(实现从文章中提取关键字算法) using System;using System.IO;using System.Text;using System.Collections;using System.Collections.Generic;using System.Text.RegularExpressions;namespace LumkitCms.Utils{    /// <summary>    /// 分词类    /// </summary>   …
这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度. TF-IDF与n-gram的结合可看我的这篇文章:https://www.cnblogs.com/Luv-GEM/p/10543612.html 用TF-IDF来分析文本的相似度可看阮一峰大佬的文章:http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.h…
TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与信息探勘的常用加权技术.TF的意思是词频(Term - frequency),  IDF的意思是逆向文件频率(inverse Document frequency).TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降.TF-IDF加权的各种形式…
前段时间,领导要求出一个关键字提取的微服务,要求轻量级. 对于没写过微服务的一个小白来讲.有点赶鸭子上架,但是没办法,硬着头皮上也不能说不会啊. 首先了解下公司目前的架构体系,发现并不是分布式开发,只能算是分模块部署.在上网浏览了下分词概念后,然后我选择了Gradle & HanLP & SpringBoot & JDK1.8 & tomcat8 & IDEA工具来实现. Gradle 我也是第一次听说,和Maven一样,可以很快捷的管理项目需要的jar.下载,解压…
(注:本文转载自阮一峰老师的博文,原文地址:http://www.ruanyifeng.com/blog/2013/03/tf-idf.html) 这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题. 有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才能正确做到? 这个问题涉及到数据挖掘.文本处理.信息检索等很多计算机前沿领域,但是出乎意料的是,有一个非常简单的经典算法,可以给出令人相当满意的结果.它…
统计每篇文章重要的词作为这篇文章的关键词,用tf-idf来实现.生产中有很多第三包可以调用,这里记录原理,顺便熟练python 1.公式 : 计算词频TF 考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化. 或者 计算反文档频率idf import os import math import operator filepath='H:/data/allfiles/allfiles' doc_word = dict() i=0 #统计每篇文章中的词频,及文章总数 for…
1. 词云简介 词云,又称文字云.标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思.常见于博客.微博.文章分析等. 除了网上现成的Wordle.Tagxedo.Tagul.Tagcrowd等词云制作工具,在python中也可以用wordcloud包比较轻松地实现(官网.github项目): from wordcloud import WordCloud import matplotlib.pypl…
TF-IDF算法 TF-IDF(词频-逆文档频率)算法是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降.该算法在数据挖掘.文本处理和信息检索等领域得到了广泛的应用,如从一篇文章中找到它的关键词. TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类.TF-IDF实际上就是…
TF-IDF(term frequency-inverse document frequency)-词频-逆文档频率 TF:统计一个词在文档中出现的频次,次数越多,表达能力越强 IDF:统计一个词在文档集的多少篇文档中出现,一个词在越少的文档中出现,则对该文档的区分能力就越强 词i在文档j中出现的概率:tf(word)=(word在文档中出现的次数)/(文档总词数) idf(word)=log[文档集中的总文档数/(1+出现词i的文档数量)] 分母加1是拉普拉斯平滑,避免有新的词在有语料库中没有…
“创建全文索引 启动服务 在SQL Server配置管理工具中,找到'SQL Full-text Filter Daemon Launcher'服务用本地用户启动. 创建全文目录 打开需要创建全文目录的数据库-存储-全文目录-右键新建全文目录 用语句创建全文目录  CREATE FULLTEXT CATALOG [FD_HouseSearch]WITH ACCENT_SENSITIVITY = ON AS DEFAULT AUTHORIZATION [dbo] 此外还可以通过存储过程创建全文目录…
1. TF-IDF简介 TF-IDF(Term Frequency/Inverse Document Frequency)是信息检索领域非常重要的搜索词重要性度量:用以衡量一个关键词\(w\)对于查询(Query,可看作文档)所能提供的信息.词频(Term Frequency, TF)表示关键词\(w\)在文档\(D_i\)中出现的频率: \[ TF_{w,D_i}= \frac {count(w)} {\left| D_i \right|} \] 其中,\(count(w)\)为关键词\(w\…
关键词提取.pynlpir库实现关键词提取. # coding:utf-8 import sys import importlib importlib.reload(sys) import pynlpir pynlpir.open() s = '怎么才能把电脑里的垃圾文件删除' key_words = pynlpir.get_key_words(s, weighted=True) for key_word in key_words: print(key_word[0], 't', key_wor…
一.TextRank原理 TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要.因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法. 1. PageRank算法 PageRank设计之初是用于Google的网页排名的,以该公司创办人拉里·佩奇(Larry Page)之姓来命名.Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一.PageRank通过互联网中的超链接关系来确定一个网页的排名,…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 9. 信息抽取 信息抽取是一个宽泛的概念,指的是从非结构化文本中提取结构化信息的一类技术.这类技术依然分为基于规则的正则匹配.有监督学习和无监督学习等各种实现方法.我们将使用一些简单实用的无监督学习方法.由于不需要标注语料库,所以可以利用海量的非结构化文本. 本章按照颗粒度从小到大的顺序,介绍抽取新词.关键词.关键短语和关键句的无监督学习方法. 9.1 新词提取 概述 新词是一个…
不同于使用自己的服务器进行分词,Discuz!在线中文分词服务是基于API返回分词结果的.在项目中,我们只需要一个函数即可方便地进行分词.关键词提取.以下是根据Discuz!在线分词服务API写的函数,测试可正常运行: 复制代码代码如下: /** * DZ在线中文分词 * @param $title string 进行分词的标题 * @param $content string 进行分词的内容 * @param $encode string API返回的数据编码 * @return  array…
绪论 最近做课题,需要分析短文本的标签,在短时间内学习了自然语言处理,社会标签推荐等非常时髦的技术.我们的需求非常类似于从大量短文本中获取关键词(融合社会标签和时间属性)进行用户画像.这一切的基础就是特征词提取技术了,本文主要围绕关键词提取这个主题进行介绍(英文). 不同版本python混用(官方用法) Python2 和python3 是一个神一般的存在,如何让他们共存呢,直到我用了pycharm我才知道为啥这么多人选择它,如下图所示配置两个目录直接可以混用了,叼炸天. 插播一个广告,想修改p…
关键词:    TF-IDF实现.TextRank.jieba.关键词提取数据来源:    语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据    数据处理参考前一篇文章介绍:    介绍了文本关键词提取的原理,tfidf算法和TextRank算法    利用sklearn实现tfidf算法    手动python实现tfidf算法    使用jieba分词的tfidf算法和TextRank提取关键词 1.关键字提取: 关键词抽取就是从文本里面把跟这…