SpringIOC 理论推导】的更多相关文章

IOC理论实现 UserDao接口 public interface UserDao { void say(); } UserDaoImpl实现类 public class UserDaoImpl implements UserDao { public void say() { System.out.println("我想使用默认数据库"); } } UserService接口 public interface UserService { void say(); } UserServi…
本书作者名气比较大,写过<黑天鹅><随机漫步的傻瓜>等书,据称专门研究不确定度性.本书是他以前的书的内容的延续. 所谓的反脆弱,其实软件业有现成的名词鲁棒性(Robust)就是稳健性.越稳健的事务.组织.制度,越能应对异常和危险.比如生物的进化,一定程度内的意外越多,存活下来的生物群体的适应能力越强大. 书中最核心的观点是把风险与收益的关系换个说法又说了一遍.许多事情发生的概率越小,发生后的收益或者损失越大. 我认为作者陷入了锤子定子模式,把已知的事情试图用一套新的理论来解释,在他…
1.Spring 1.1.简介 Spring:春天----->给软件行业带来了春天! 2002,首次推出了Spring框架的雏形:interface21框架! Spring框架即以interface21框架为基础,经过重新设计,并不断丰富其内涵,于2004年3月24日,发布了1.0正式版. Rod Johnson,Spring Framework创始人,著名作者.很难想象Rod Johnson的学历,真的让好多人大吃一惊,他是悉尼大学的博士,然而他的专业不是计算机,而是音乐学. Spring理念…
控制反转 IOC 理论推导 按照我们传统的开发,我们会先去 dao 层创建一个接口,在接口中定义方法. public interface UserDao { void getUser(); } 然后再去实现类中实现这个方法的作用. public class UserDaoImpl implements UserDao { @Override public void getUser() { System.out.println("默认获取用户的数据"); } } 然后再去 service…
一直很好奇机器学习实战中的SVM优化部分的数学运算式是如何得出的,如何转化成了含有内积的运算式,今天上了一节课有了让我很深的启发,也明白了数学表达式推导的全过程. 对于一个SVM问题,优化的关键在于 KKT理论所标明的是在拉格朗日乘数法中引入的系数与上面的不等式约束条件的乘积等于0始终成立,这个条件所保证的是优化问题的解存在,对于上面的优化,从线性空间的角度来思考就是在做最大化最小间隔,是一个非常明显的二次优化问题.本身分析到这里,还不足以说明问题,为何会出现含有内积的运算式呢. 从这个拉格朗日…
适合阅读人群:有一定的数学基础. 这几篇文章是16年写的,之前发布在个人公众号上,公众号现已弃用.回过头来再看这几篇文章,发现写的过于稚嫩,思考也不全面,这说明我又进步了,但还是作为学习笔记记在这里了,方便以后自己经常查阅. 支持向量机(SVM)理论总结系列.线性可分(附带R程序案例:用体重和心脏重量来预测一只猫的性别) R系列:关联分析:某电商平台的数据:做捆绑销售和商品关联推荐 R系列:分词.去停用词.画词云(词云形状可自定义) end!…
建立神经网络的主要步骤是: 1. 定义模型结构(例如输入特征的数量) 2. 初始化模型的参数 3. 循环: # 3.1 计算当前损失(正向传播) # 3.2 计算当前梯度(反向传播) # 3.3 更新参数(梯度下降) 实现代码 #单层神经网络,不含隐含层 import numpy as np import matplotlib.pyplot as plt import h5py #是与H5文件中存储的数据集进行交互的常用软件包. from lr_utils import load_dataset…
公式不便于在这里编辑,所以在word中编辑好了,截图过来. 用python+牛顿迭代法   求 y =(x-2)**3的解 import numpy as np import matplotlib.pyplot as plt ''' 牛顿迭代法实现 y =(x-2)**3的解 ''' def f(x): return (x-2)**3 def fd(x): return 3*((x-2)**2) def newtonMethod(n,assum): time = n x = assum next…
作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 本文是曲线拟合与分布拟合系列的一部分,主要总结混合高斯模型(Gaussian Mixture Model,GMM),GMM主要基于EM算法(前文已经推导),本文主要包括: 1)GMM背景介绍: 2)GMM理论推导: 3)GMM代码实现: 内容多有借鉴他人,最后一并给出链接. 一.GMM背景…
作者:桂. 时间:2017-03-21  07:25:17 链接:http://www.cnblogs.com/xingshansi/p/6592599.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 本文为曲线拟合与分布拟合系列的一部分,主要讲解混合拉普拉斯分布(Laplace Mixture Model,LMM).拉普拉斯也是常用的统计概率模型之一,网上关于混合高斯模型(GMM)的例子很多,而关于LMM实现的很少.其实混合模型都可以用EM算法推导,只是求闭式解的运算上略有差别,全文包…
目录 1. 需要的微积分知识 1.1 导数 1.2 求导的链式法则 2. 梯度下降法 2.1 梯度 2.2 梯度算法的解释 3.误差反向传播算法 3.1 理论推导 3.1.1 符号说明 3.1.2 推导过程 3.2 BP算法的小结 3.3 Python实现 3.3.1 最简单三层网络 3.4 附录: 1. 需要的微积分知识 1.1 导数 对于一元函数,在导数存在的情况下,在某一点的导数,也就是该点的斜率. 对于多元函数,对于某一点求导,则需要指明方向,两个特殊的方向,1. 偏导:在坐标轴方向的导…
原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后的维两两不相关!至于为什么?那就接着往下看.在本文中,将会很详细的解答这些问题:PCA.SVD.特征值.奇异值.特征向量这些关键词是怎么联系到一起的?又是如何在一个矩阵上体现出来?它们如何决定着一个矩阵的性质?能不…
机器学习中,神经网络算法可以说是当下使用的最广泛的算法.神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的电位:如果某神经元的电位超过一个阈值,则被激活,否则不被激活.误差逆传播算法(error back propagation)是神经网络中最有代表性的算法,也是使用最多的算法之一. 误差逆传播算法理论推导 误差逆传播算法(error back propagation)简称BP网络算法.而一般在说BP网…
   \(LDA\)是一种比较常见的有监督分类方法,常用于降维和分类任务中:而\(PCA\)是一种无监督降维技术:\(k\)-means则是一种在聚类任务中应用非常广泛的数据预处理方法.    本文的主要写作出发点是:探讨无监督情况下,\(LDA\)的类内散度矩阵和类间散度矩阵与\(PCA\)和\(k\)-means之间的联系. 1.常规有监督\(LDA\)的基本原理:   (1) \(LDA\)的目标函数:    关于\(LDA\)的产生及理论推导,大家参考:"线性判别分析LDA原理总结&qu…
IMU姿态惯性推导 最近从事行人惯性导航的研究,本人也是一个小白,其中看了很多文献,有很多个人思考很费时间的地方,撰写此随笔的目的不仅是给自己做一个笔记,也是给各位有需要的仁兄一点个人理解. 本文只关于使用IMU传感器为主的行人导航算法. 本文为一篇行人惯性导航的入门,主要针对其中重要的涉及的知识点之间的解释.串联,包括航向更新.速度更新.位置更新.坐标变换原理即代码,不深究其推导.要是有什么讲得不对的地方,请给予指正,谢谢. 引言 以IMU为主,其他传感器(多为磁力计.高度计.气压计.压力传感…
背景就不介绍了,REINFORCE算法和AC算法是强化学习中基于策略这类的基础算法,这两个算法的算法描述(伪代码)参见Sutton的reinforcement introduction(2nd). AC算法可以看做是在REINFORCE算法基础上扩展的,所以这里我们主要讨论REINFORCE算法中算法描述和实际代码设计中的一些区别,当然这也适用于AC算法: 1.  时序折扣项为什么在实际代码中不加入  REINFORCE算法中是需要对状态动作对出现在episode内的顺序进行折扣加权的,即 γt…
今天打算写写关于 IM 去中心化涉及的架构模型变化和设计思路,去中心化的概念就是说用户的访问不是集中在一个数据中心,这里的去中心是针对数据中心而言的. 站在这个角度而言,实际上并非所有的业务都能做去中心化设计,对于一致性要求越高的业务去中心化越难做.比如电商领域的库存就是一个对一致性要求很高的业务,不能超卖也不能少卖,这在单中心容易实现,但多中心纯从技术层面感觉无解,可能需要从业务和技术层面一起去做个折衷. 反过来看 IM 的业务场景是非常适合做去中心化设计的,因为其业务场景都是弱一致性需求.打…
机器学习从学习方式上来讲,可以分为两类: 监督学习(Supervised Learning),简而言之就是“有标签”学习 无监督学习(Unsupervised Learning),简而言之就是“无标签”学习 为了便于今后的机器学习,吴恩达先生(Andrew Ng)特别提出了一些notation(汉语译作“记法”,搞IT的最好渐渐熟悉这些基础单词) use x(i) to denote "input" variable·········“feature” use y(i) to deno…
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:刘皮皮链接:https://www.zhihu.com/question/24827633/answer/29120394来源:知乎 类比来说类似于几个人站成一排第一个人看一幅画(输入数据),描述给第二个人(隐层)……依此类推,到最后一个人(输出)的时候,画出来的画肯定不能看了(误差较大).反向传播就是,把画拿给最后一个人看(求取误差),然后最后一个人就会告诉前面的人下次描述时需要注意哪里(权值修正).不知明白了没有,如果…
本文主要介绍支持向量机理论推导及其工程应用. 1 基本介绍 支持向量机算法是一个有效的分类算法,可用于分类.回归等任务,在传统的机器学习任务中,通过人工构造.选择特征,然后使用支持向量机作为训练器,可以得到一个效果很好的base-line训练器. 支持向量机具有如下的优缺点, 优点: 高维空间有效: 维度大于样本数量的情况下,依然有效: 预测时使用训练样本的子集(也即支持向量),节省内存: 可以使用不同的核函数用于决策: 缺点: 如果特征的数目远远大于样本的数目,性能将会降低: 不能直接提供概率…
一.引言     双边滤波在图像处理领域中有着广泛的应用,比如去噪.去马赛克.光流估计等等,最近,比较流行的Non-Local算法也可以看成是双边滤波的一种扩展.自从Tomasi et al等人提出该算法那一天起,如何快速的实现他,一直是人们讨论和研究的焦点之一,在2011年及2012年Kunal N. Chaudhury等人发表的相关论文中,提出了基于三角函数关系的值域核算法,能有效而又准确的实现高效双边算法.本文主要对此论文提出的方法加以阐述. 双边滤波的边缘保持特性主要是通过在卷积的过程中…
直接上代码: package main import ( "fmt" "runtime" "strconv" "sync" ) func say(str string) { ; i < ; i++ { runtime.Gosched() fmt.Println(str) } } func sayStat(str string, ch chan int64) { ; i < ; i++ { runtime.Gosch…
http://www.cnblogs.com/wengzilin/archive/2013/04/24/3041019.html 学 习是神经网络一种最重要也最令人注目的特点.在神经网络的发展进程中,学习算法的研究有着十分重要的地位.目前,人们所提出的神经网络模型都是和学习算 法相应的.所以,有时人们并不去祈求对模型和算法进行严格的定义或区分.有的模型可以有多种算法.而有的算法可能可用于多种模型.不过,有时人们也称算法 为模型. 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学…
简介 之前在一篇实时深度图优化的论文中看到球谐光照(Spherical Harmonics Lighting)的应用,在查阅了许许多多资料之后还是无法完全理解,我个人觉得如果之前对实时渲染技术不是很了解的话,球谐光照还是有一定难度的.大多数的资料都是从原理上描述球谐函数及其光照过程,而没有对具体的应用做解释,我直到真正动手实现了一遍球谐光照之后,才完全理解球谐光照具体的过程以及作用. 球谐光照实际上是一种对光照的简化,对于空间上的一点,受到的光照在各个方向上是不同的,也即各向异性,所以空间上一点…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT 地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解. 2.xgboost vs gbdt 说到xgboost,不得不说gbdt.了解gbdt可以看我这篇文章 地址,gbdt无论在理论推导还是在应用场景实践都是相当完美的,但有一个问题:第n颗树训练时,需要用到第n-1颗树的(近似)残差.从这个角度来看,gbdt比较难以实现分布式(ps:虽然难,依然是可以的,换个角度思…
Robotics Perception Professor Kostas and Jianbo Shi week 1: camera model 凸透镜成像原理:凸透镜焦点与焦距是固定的,这是物理性质.物距u.像距v.焦距f的关系为1/f=1/u+1/v perspective drawing bi-perspectograph construction changing 1. change the distance from the objects: OS 2. change the foca…
 转载请联系原文作者 需要获得授权,非法转载 原文作者将享受侵权诉讼 文/不会停的蜗牛(简书作者)原文链接:http://www.jianshu.com/p/55a67c12d3e9 通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普.以后有时间再对单个算法做深入地解析. 今天的算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素…
来源:学步园 FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念.在大学的理工科课程中,在完成高等数学的课程后,数字信号处理一般会作为通信电子类专业的专业基础课程进行学习,原因是其中涉及了大量的高等数学的理论推导,同时又是各类应用技术的理论基础. 关于傅立叶变换的经典著作和文章非常多,但是看到满篇的复杂公式推导和罗列,我们还是很难从直观上去理解这一复杂的概念,我想对于普通的测试工程师来说,掌握FFT的…
问题一:以下的代码的输出将是什么? 说出你的答案并解释. class Parent(object): x = 1 class Child1(Parent): pass class Child2(Parent): pass print Parent.x, Child1.x, Child2.x Child1.x = 2 print Parent.x, Child1.x, Child2.x Parent.x = 3 print Parent.x, Child1.x, Child2.x 答案 以上代码的…