【洛谷】P1447 能量采集】的更多相关文章

题目大意:有一张$n(n\leqslant50)$个点$m(m\leqslant n(n-1))$条边的有向图,每个点还有一个自环,每个点有一个权值.每一秒钟,每个点的权值会等分成出边个数,流向出边.$q(q\leqslant5\times10^4)$次询问,每次问$t$秒时每个点的权值,只需要输出异或和 题解:矩阵快速幂,可以构造出转移矩阵,发现直接做的复杂度是$O(qn^3\log_2t)$,不可以通过. 然后预处理转移矩阵的$2^i$次幂,就可以$O(n^2)$完成一次转移(向量乘矩阵),…
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/problemnew/show/P1447 首先,题意就是求 ∑(1 <= i <= n) ∑(1 <= j <= m) [ 2 * gcd(i,j) -1 ]: 方法1:容斥原理 枚举每个数作为 gcd 被算了几次: 对于 d ,算的次数 f[d] 就是 n/d 和 m/d 中互质的…
To 洛谷.1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(M…
原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人都随身佩带着一串能量项链.在项链上有NN颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是\(Mars\)人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出…
P1447能量采集 定义:(i,j)表示处于(i,j)的植物的贡献 我们发现,点(i,j)与(0,0)的连线所过整点的数目为\(\gcd(i,j)\) 发现要是想记录每个点的答案并不好算.那么怎么好算呢? 我们来找一找同一直线上的所有点答案的和的关系.先不考虑答案只考虑个数.发现,寻找一个点及其倍数的个数的和更加好算.而且,因为有n和m的限制,那么向下取整的答案一定就是其本身.考虑容斥,我们只需要从大往小更新答案并将答案乘2减1加起来即可. 那么对于一个点及其倍数的答案怎么计算呢? 假设n小于m…
Portal Description 给出\(n,m(n,m\leq10^5),\)计算\[ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)\] Solution 简单起见我们来钦定\(n\leq m\),然后计算\(\sum_{i=1}^n \sum_{j=1}^m gcd(i,j)\). \[ans = \sum_{i=1}^n \sum_{j=1}^m gcd(i,j) = \sum_{d=1}^n d\sum_{i=1}^n \sum_{j=1}^m [g…
此题虽为紫,但其实在水 能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有 nn 列,每列有 mm 棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标 (x, y)(x,y) 来表示,其中 xx 的范围是 11 至 nn,yy 的范围是 11 至 mm,表示是在第 xx 列的第 yy 棵. 由于能量汇集机器较大,不便移动,…
https://www.luogu.org/problemnew/show/P2158 以人所在位置为(0,0)建立坐标系, 显然除了(0,1)和(1,0)外,可以只在坐标(x,y)的gcd(x,y)==1时统计贡献..因为如果gcd(x,y)==g而g不等于1,那么会在(x/g,y/g)处统计贡献 1要特判.. #include<cstdio> #include<algorithm> #include<cstring> #include<vector> u…
传送门 很明显题目要求的东西可以写成$\sum_{i=1}^{n}\sum_{j=1}^m gcd(i,j)*2-1$(一点都不明显) 如果直接枚举肯定爆炸 那么我们设$f[i]$表示存在公因数$i$的数的对数 然而$i$并不一定是这几对数的最大公因数 那么怎么办呢?考虑容斥 以$i$为最大公因数的数的对数,就是有$i$为公因数的数,减去最大公因数为$2*i$的数,减去为$3*i$的数…… 那么这个就可以一波容斥求出来了 时间复杂度为$O(nlogn)$ //minamoto #include<…
题意:问题可以转化成求$\sum_{i=1}^{n}\sum_{j=1}^{m}(2*gcd(i,j)-1)$ 将2和-1提出来可以得到:$2*\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)-n*m$ 令Ans=$\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)$ =$\sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$ =$\sum_{d=1}^{n}d\sum_{i=1}^{\lf…
题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标…
$题目$ 不得不说,最近我特别爱刷这种区间DP题,因为这个跟其他的DP有些不一样的地方,主要是有一定的套路,就是通过小区间的状态更新大区间,从而得到原题给定区间的最优解. $但是$ 这个题应该跟$石子合并$差不多,不同的几点就是一个是小区间加小区间,一个是小区间$*$小区间.实际上本质都是一样的,但是要注意一些坑.$ $坑点$: 比如说首先要断环为链, 这个比较简单,然后就是还要注意区间的左右端点和断点判断上的问题. 代码: #include<bits/stdc++.h> using name…
题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标…
P1063 能量项链 题目描述 在MarsMars星球上,每个MarsMars人都随身佩带着一串能量项链.在项链上有NN颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是MarsMars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为mm,尾标记为rr,后一颗能量珠的头标记为r,尾标记为nn,则聚合后释放…
P1063 能量项链 题目描述 在\(Mars\)星球上,每个\(Mars\)人都随身佩带着一串能量项链.在项链上有\(N\)颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是\(Mars\)人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为\(m\),尾标记为\(r\),后一颗能量珠的头标记为r,尾标记为…
P1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标 记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是 Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为m,尾标记为r,后 一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mar…
题目描述: 给定一串序列x[],其中的每一个Xi看作看作一颗珠子,每个珠子包含两个参数,head和tail,前一颗的tail值是后一个的head值,珠子呈现环形(是一条项链),所以最后一颗的tail是第一个珠子的head.当tail遇到对应的head时会放出 Xi.head*Xi.tail*X++i.head,之后这两颗相邻的珠子会变成新的一颗Xp,它的参数为Xp.head=Xi.head,Xp.tail=X++i.tail,问整条项链合并到只剩下一颗时所能产生的最大能量. 题目链接:P1063…
题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为(Mars单位),新产生的珠子的头标记为m,尾…
https://www.luogu.org/problemnew/show/P1063 这个并不是每次只能从两边扩展的,可以从中间断开. #include<bits/stdc++.h> using namespace std; typedef long long ll; int a[205]; ll dp[205][205]; ll calc(int i,int m,int j) { return a[i]*a[m]*a[j]; } int main() { #ifdef Yinku freo…
嗯... 题目链接:https://www.luogu.com.cn/problem/P1063 这道题首先要读懂题目,然后往上套区间dp,要转换成链式. AC代码: #include<cstdio> #include<iostream> using namespace std; ],f[][]; int main(){ int n; scanf("%d",&n); ;i<=n;i++){ scanf("%d",&a[i…
对于一个固定的左端点,右端点向右移动时,其子串权值和不断增大,字典序降序排名不断减小,因此对于一个左端点,最多存在一个右端点使其满足条件. 所以可以枚举左端点,然后二分右端点的位置,权值和通过前缀和来查询,现在的问题就是如何快速查询一个子串的排名. 考虑用后缀数组来解决,对于一个子串\([l,r]\),对于在位置\(l\)对应的后缀排名之前的后缀中的子串是能对该子串的排名产生贡献的. 若该子串的长度比\(l\)对应的后缀和前一个后缀的\(LCP\)大,即\(len>ht_{rk_l}\),也就是…
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000,1\leq k\leq n,m\leq 50000$ 暴力做法 $O(Tnm\log\max(n,m))$ 不用说了,那有没有什么更好的做法呢? 我们定义一种函数叫莫比乌斯函数 $\mu$,它的定义是: 当 $n=1$ 时,$\mu(n)=1$ 当 $n$ 可以分解成 $p_1p_2...p_k$…
题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过程中有一定的能…
什么毒瘤... 解:n = 1的,发现就是一个二次函数,解出来一个v的取值范围,选最大的即可. n = 2的,猜测可以三分.于是先二分给第一段路多少能量,然后用上面的方法求第二段路的最短时间.注意剩余能量不足跑完第二段路的时候,返回INF. 正解是啥拉格朗日乘子法,完全搞不倒... /** * There is no end though there is a start in space. ---Infinity. * It has own power, it ruins, and it go…
洛谷题目传送门 很可惜,充满Mo力的Mo拟退火并不是正解.不过这是一道最适合开始入手Mo拟退火的好题. 对模拟退火还不是很清楚的可以看一下 这道题还真和能量有点关系.达到平衡稳态的时候,物体的总能量应该是最小的.而总的能量来源于每个物体的重力势能之和.要想让某个物体势能减小,那就让拉着它的绳子在桌面下方的长度尽可能的长,也就是桌面上的要尽可能短.由此看来,某个物体的势能与桌面上的绳子的长度.物体重量都成正比. 于是,为了找到平衡点,我们要找一个点使得\(\sum_{i=1}^n d_i*w_i\…
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从而唱出强力的魔法.比如说为了加强攻击力而将火和木组合,为了掩盖弱点而将火和土组合等等,变化非常丰富. 题目描述 现在帕琪与强大的夜之女王,吸血鬼蕾咪相遇了,夜之女王蕾咪具有非常强大的生命力,普通的魔法难以造成效果,只有终极魔法:帕琪七重奏才能对蕾咪造成伤害.帕琪七重奏的触发条件是:连续释放的7个魔法…
题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与元素之间可以互相转换:能量守恒……. 能量守恒……iPig 今天就在进行一个麻烦的测验.iPig 在之前的学习中已经知道了很多种元素,并学会了可以转化这些元素的魔法,每种魔法需要消耗 iPig 一定的能量.作为 PKU 的顶尖学猪,让 iPig 用最少的能量完成从一种元素转换到另一种元素……等等,i…
洛谷 P1984 [SDOI2008]烧水问题 题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热.把一杯水的温度升高t℃所需的能量为(4200*t/n)J,其中,“J”是能量单位“焦耳”.如果一旦某杯水的温度达到100℃,那么这杯水的温度就不能再继续升高,此时我们认为这杯水已经被烧开.显然地,如果直接把水一杯一杯地烧开,所需的总能量为(4200*100)J. 在烧水的过程中,我们随时可以在两杯温…
传送门 1.铺地毯 d1t1 模拟 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<queue> #include<vector> #include<ctime> typedef long long…
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) 互不相等.将糖果和药片一一对应,求 糖果能量大于药片 比 药片能量大于糖果 多 \(k\) 组的方案数. 数据范围:\(1\le n\le 2000\),\(0\le k\le n\). 萌新初学二项式反演,这是第一道完全自己做出来的题,所以写篇题解庆祝并提升理解. 有 \(\frac{n+k}{2…