概述 STDN是收录于CVPR 2018的一篇目标检测论文,提出STDN网络用于提升多尺度目标的检测效果.要点包括:(1)使用DenseNet-169作为基础网络提取特征:(2)提出Scale-transfer Layer,在几乎不增加参数量和计算量的情况下生成大尺度的feature map. STDN介绍 Figure 1回顾了目标检测算法对feature map的利用情况: (a)是只使用单一尺度的feature map进行检测,这种方法利用的特征层较少,检测效果一般,代表性的算法如Fast…
arxiv上放出的物体检测的文章,在Pascal voc数据集上排第二.源码也已放出(https://github.com/sanghoon/pva-faster-rcnn),又可以慢慢把玩了.这篇文章遵循faster-rcnn"CNN feature extraction + region proposal + RoI classification"的pipeline,重新设计了feature extraction的网络结构."The devil is in details…
摘要 目前检测的准确率受物体视频中变化的影响,如运动模糊,镜头失焦等.现有工作是想要在框的级别上寻找时序信息,但这样的方法通常不能端到端训练.我们提出了flow-guided feature aggregation,一个用于视频物体检测的端到端学习框架.在特征级别上利用时序信息,通过相邻帧的运动路径提高每帧的特征,从而提高检测的准确率. 简介 特征提取网络提取出每帧的feature maps.为了enhance被处理帧的特征,用一个光流网络(flownet)预测相邻帧和该帧之间的motions.…
何凯明大佬 ICCV 2017 best student paper 作者提出focal loss的出发点也是希望one-stage detector可以达到two-stage detector的准确率,同时不影响原有的速度.one-stage detector的准确率不如two-stage detector的原因,作者认为原因是:样本的类别不均衡导致的.因此针对类别不均衡问题,作者提出一种新的损失函数:focal loss,这个损失函数是在标准交叉熵损失基础上修改得到的.这个函数可以通过减少易…
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031…
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文地址:https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 论文地址:Object detect…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
作者从detector的overfitting at training/quality mismatch at inference问题入手,提出了基于multi-stage的Cascade R-CNN,该网络结构清晰,效果显著,并且能简单移植到其它detector中,带来2-4%的性能提升 论文: Cascade R-CNN: Delving into High Quality Object Detection 论文地址: https://arxiv.org/abs/1712.00726 代码地…
论文分析了one-stage网络训练存在的类别不平衡问题,提出能根据loss大小自动调节权重的focal loss,使得模型的训练更专注于困难样本.同时,基于FPN设计了RetinaNet,在精度和速度上都有不俗的表现 论文:Focal Loss for Dense Object Detection 论文地址:https://arxiv.org/abs/1708.02002 论文代码:https://github.com/facebookresearch/Detectron Introducti…
前言 本来想按照惯例来一个overview的,结果看到1篇十分不错而且详细的介绍,因此copy过来,自己在前面大体总结一下论文,细节不做赘述,引用文章讲得很详细,另外这篇paper引用十分详细,如果做detection可以从这篇文章去读更多不同类型的文章. 论文概述   卷积网络具有较好的平移不变性,但是对尺度不变性有较差的泛化能力,现在网络具有的一定尺度不变性.平移不变性往往是通过网络很大的capacity来"死记硬背",小目标物体难有效的检测出来,主要原因有:1.物体尺度变化很大,…