KL散度(KL divergence) 全称:Kullback-Leibler Divergence. 用途:比较两个概率分布的接近程度.在统计应用中,我们经常需要用一个简单的,近似的概率分布 f * 来描述. 观察数据 D 或者另一个复杂的概率分布 f .这个时候,我们需要一个量来衡量我们选择的近似分布 f * 相比原分布 f 究竟损失了多少信息量,这就是KL散度起作用的地方. 熵(entropy) 想要考察信息量的损失,就要先确定一个描述信息量的量纲. 在信息论这门学科中,一个很重要的目标就…