luogu P1398 [NOI2013]书法家】的更多相关文章

传送门 注意到\(N\ O\ I\)三个字母都可以从左到右拆成三部分,即\(N=\)一个矩形+一堆矩形+一个矩形,\(O=\)一条+两条横的+一条,\(I=\)两条横的+一个矩形+两条横的,所以可以拆成\(13\)个部分转移(\(9\)个字母部分,\(4\)个空白部分) 设\(f_{i,j,l,r}\)表示第\(i\)列,放的是字母的\(j\)部分,放了从\(l\)行到\(r\)行的最大值,\(g_{i,j}\)表示第\(i\)列,放的是的空白\(j\)部分的最大值.转移根据不同的部分,枚举下一…
传送门 就是个普及组 $dp$ 合集,把 $NOI$ 从左到右拆成 $9$ 个部分,每个部分都可以分别 $dp$ 除了 $N$ 的中间部分比较恶心以外其他都还好,自己推一下然后就知道转移,就 $N$ 的中间优化转移比较不好写 随便吧,反正 $9$ 个 $dp$ 都挺简单的,量变导致质变,我在想那一年的选手是不是都被恶心到了...反正我是被恶心死了 $luogu$ 上这一题空间限制太小了,原题是 $512MB$ ,所以这份代码在 $luogu$ 过不去(我都滚动数组了啊...) #include<…
来自FallDream的博客,未经允许,请勿转载,谢谢. 小E同学非常喜欢书法,他听说NOI2013已经开始了,想题一幅“NOI”的字送给大家. 小E有一张非常神奇的纸,纸可以用一个n 行m 列的二维方格矩阵来表示,为了描述方便,我们定义矩阵左下角方格坐标为(1,1) ,右上角方格坐标为(m,n) .矩阵的每个方格有一个整数的幸运值.在格子上面写字可以增加大家的幸运度,幸运度的大小恰好是所有被笔写到的方格的幸运值之和.现在你要在上面写上 ‘N’,‘O’,‘I’三个字母. 下面给出3个书法字的定义…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 小E同学非常喜欢书法,他听说NOI2013已经开始了,想题一幅“NOI”的字送给大家. 小E有一张非常神奇的纸,纸可以用一个n 行m 列的二维方格矩阵来表示,为了描述方便,我们定义矩阵左下角方格坐标为(1,1) ,右上角方格坐标为(…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3241 题意: 思路:把每个字母分成三部分,两个字母之间还有空的列,所以我一共设了11个状态f[11][i][j],123表示字母N,4表示NO之间的空列,567表示O,8表示OI之间的空列,9 10 11表示I.然后按照列DP.f[t][i][j]表示状态t,最上最下的位置[i,j]的最大价值.那么我们看转移: 1:直接生成或者从1转移过来 2:从1或者2转移过来 3:从2或者3转移过来…
http://uoj.ac/problem/125 (题目链接) 题意 在网格上写“NOI”,每个格子上有一些权值,要求覆盖的权值最大.书写有一些规则. Solution 将“NOI”分成11个部分,每个部分都是有几个有相同特点的矩形构成的,按列dp前缀最大值优化一下即可.看起来很难码的样子,其实套路都差不多,但是想清楚,一些细节处理到位,平时习惯好一点就可以很快写完辣. ${f[p][i][j][k]}$表示第${p}$个部分,正在dp第${i}$列,矩形上边界为${j}$,下边界为${k}$…
传送门 注意到答案为这个基环树直径\(/2\) 因为是基环树,所以考虑把环拎出来.如果直径不过环上的边,那么可以在环上每个点下挂的子树内\(dfs\)求得.然后如果过环上的边,那么环上的部分也是一条链,考虑拆环为链,现在问题是一条链,每个点往下延伸若干长度,问最远的距离.每个点往下最长的长度可以随便预处理,然后最长的路径一定是两个点以及往下延伸的路径+在链上两点之间的路径,也可以看成这条长链+前面那个点往下的链-前面链的部分+后面那个点往下的链-后面链的部分,所以可以维护两棵线段树,分别维护 点…
传送门 题目中那两个递推式显然可以写成矩乘的形式,然后十进制快速幂即可.这里不再赘述 只有两个递推式,我们可以考虑一波推式子,首先第一行的元素应该分别是\(1,a+b,a^2+ab+b,a^3+a^2b+ab+b...a^{m-1}+b\sum_{i=0}^{m-2}a^i\) 然后这样子推下去,第二行最后一个元素为\(a^{2(m-1)}c+a^{m-1}bc\sum_{i=0}^{m-2}a^i+a^{m-1}d+b\sum_{i=0}^{m-2}a^i\) 同理,第三行最后一个元素为\(a…
传送门 这题妙蛙 首先考虑构造出一个合法的树.先重新编号,把bfs序整成\(1,2,3...n\),然后bfs序就是按照从上到下从左往右的遍历顺序,所以可以考虑对bfs序分层,可以知道分层方式只会对应一棵树.按照\(2\to n\)的顺序枚举,如果这个点在dfs序中的位置小于上一个,那么这个点必须放在下一层.这样构造是正确的(如果有合法的树),并且构造出来的树高度最小 然后考虑能不能构造其他的树.手玩可以发现,如果某个点\(i\)满足以下条件,那么就可以把它以及这一层后面的点的父亲改成\(i-1…
传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向量\(i\),假如前面所有向量和他的内积为\(1\),那么所有内积之和应该要和\(i-1\)模\(2\)同余,所以如果某个\(i\)不满足这个条件,就可以\(O(nd)\)的找出前面和他内积为\(0\)的向量.而内积之和可以看成当前向量和前面所有向量之和的内积,所以维护好前面向量的和,每次前缀和的当…