[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一位火焰之神 “我将赐予你们温暖和希望!” 只见他的身体中喷射出火焰之力 通过坚固的钢铁,传遍了千家万户 这时,只听见人们欢呼 “暖气来啦!” 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很低. 小R的宿…
题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j} \equiv 0 {\mod k}$当且仅当将$i$和$j$用$k$进制表示的时候,有一位上的$i<j$. 位数上的计算用数位DP就没错了. 代码: #include<bits/stdc++.h> using namespace std; ; int t,k; long long n,m…
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 首先考虑,给定一条路径,如何计算与其相交的所有路径的权值和?显然一条路径和另一条路径相交,当且仅当这条路径的LCA在另一条路径上,或者另一条路径的LCA在这条路径上.那么我们考虑维护两个数组\(a\)和\(b\), 分别表示以某点为LCA的路径权值和以及覆盖这个点但不以该点为LCA的路径权值和,则…
题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq 10^{13}\) 分析 看到分数考虑分数规划,二分答案 \(x\),式子转化成 \(-x< \frac{\sum w}{t}-k< x\) 将边权变为 \(w-k\) 消除 \(k\) 的影响.但是不能够直接求最长链.因为是路径,考虑点分治. 二分答案 \(x\) 之后考虑两条路径组合 \((A…
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选择两个物品可以有 \((1,2),(1,3),(2,3)\) 这三种选择方法.根据组合数的定义,我们可以给出计算组合数$ C_m^n$的一般公式: \[ C_n^m=\frac{n!}{m!(n-m)!} \] 其中 \(n!=1×2×⋯×n\).(额外的,当 n=0n=0 时, n!=1n!=1)…
UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x) = \sum_{k = 0}^{n}f(k){n\choose k}x^k(1 - x) ^{n - k} \pmod{998244353} \] 考虑一个很巧妙的变化:组合数多项式! 设: \[ f(n)=\sum_{i=0}^m\binom{n}{i}h_i \] 可以这么玩的原因是\(\b…
[UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一条路径连接.这些城市生产的汽水有许多不同的风味,在经过道路 \(i\) 时,牛牛会喝掉 \(w_i\) 的汽水.牛牛非常喜欢喝汽水,但过量地饮用汽水是有害健康的,因此,他希望在他旅行的这段时间内,平均每天喝到的汽水的量尽可能地接近给定的一个正整数 \(k\). 同时,牛牛希望他的旅行计划尽可能地有趣…
#274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; #define lc t[x].ch[0] #define rc t[x].ch[1] #define pa t[x].fa co…
UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. 因此我们要求的路径一定是最大生成树上的路径. 于是变成了LCT模板题,动态维护最大生成树即可. 注意每次find可能会T,于是我又写了个并查集... 代码: #include <stdio.h> #include <string.h> #include <algorithm>…
题目链接: [清华集训2016]温暖会指引我们前行 题目大意:有$n$个点$m$次操作,每次操作分为三种:1.在$u,v$两点之间连接一条编号为$id$,长度为$l$,温度为$t$的边.2.查询从$u$到$v$的最温暖的路径长度(定义最温暖的路径为将路径上的边按温度从小到大排序后字典序尽可能大).3.将编号为$id$的边长度修改为$l$. 仔细读题发现题目中说的字典序其实就是使路径上的边都尽可能大. 那么最优方案一定就是走最大生成树上的边咯. 用LCT动态维护最大生成树. 当新加入边两端点不连通…
uoj266[清华集训2016]Alice和Bob又在玩游戏(SG函数) uoj 题解时间 考虑如何求出每棵树(子树)的 $ SG $ . 众所周知一个状态的 $ SG $ 是其后继的 $ mex $ . 考虑其后继的 $ SG $ 如何求. 对于将 $ y $ 的贡献计算到其父亲 $ x $ 上. 如果删掉 $ x $ ,后继状态是所有儿子的 $ SG $ 异或, 如果删掉 $ y $ 以内的点,则是用 $ y $ 子树内的所有后继状态异或上 $ x $ 子树内 $ y $ 子树外的部分. 这…
[UOJ274][清华集训2016]温暖会指引我们前行 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很低. 小R的宿舍楼中有n个地点和一些路,一条路连接了两个地点,小R可以通过这条路从其中任意一个地点到达另外一个地点.但在刚开始,小R还不熟悉宿舍楼中的任何一条路,所以他会慢慢地发现这些路,他在发现一条路时还会知道这条路的温度和长度.每条路的温度都是互不相同的. 小R需要在宿舍楼中活动,每次他都需要从…
[清华集训2016]温暖会指引我们前行 统计 描述 提交 自定义测试 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一位火焰之神 “我将赐予你们温暖和希望!” 只见他的身体中喷射出火焰之力 通过坚固的钢铁,传遍了千家万户 这时,只听见人们欢呼 “暖气来啦!” 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很低. 小R的…
题目链接: [清华集训2016]石家庄的工人阶级队伍比较坚强 题目大意:有$n=3^m$个人玩石头剪刀布,共$t$轮游戏,每轮每个人要和包括自己的所有人各进行$m$次石头剪刀布.每个人在$m$轮中的决策固定,即为这个人编号的长度为$m$的三进制(其中$0$表示剪刀.$1$表示石头.$2$表示布,不足$m$位用$0$补齐).每个人有一个初始分数$f_{0,x}$,给出一个分数矩阵$b$,其中$b_{i,j}$表示赢了$i$局输了$j$局的得分,在第$i$轮结束后,第$x$个人的分数为$f_{i,x…
题目链接: [清华集训2016]如何优雅地求和 题目大意:给出一个多项式$m+1$个点值$a_{0},a_{1}...a_{m}$(其中$f(i)=a_{i}$),并给出两个数$n,x$,求$Q(f,n,x)=\sum\limits_{k=0}^{n}f(k)C_{n}^{k}x^k(1-x)^{n-k}mod998244353$的值. 当$f(x)=1$时,$Q=\sum\limits_{i=0}^{n}C_{n}^{i}k^i(1-k)^{n-i}$,根据二项式定理可知这个式子结果为$1$.…
题面 传送门:UOJ Solution 这题的数位DP好蛋疼啊qwq 好吧,我们说回正题. 首先,我们先回忆一下LUCAS定理: \(C_n^m \equiv C_{n/p}^{m/p} \times C_{n\%p}^{m\%p} (\%p)\) 我们仔细观察这个定理,就可以发现一个事实:LUCAS定理本质上是在对n,m两个数做K进制下的数位分离 所以说,LUCAS定理我们可以这样表示: \(C_n^m \equiv \prod C_{a_i}^{b_i}\) (ai与bi为K进制拆分后的两个…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ275.html 题解 用卢卡斯定理转化成一个 k 进制意义下的数位 dp 即可. 算答案的时候补集转化一下会好写一些. 代码 #include <bits/stdc++.h> using namespace std; typedef long long LL; LL read(){ LL x=0,f=0; char ch=getchar(); while (!isdigit(ch)) f|=ch=='…
传送门 假设有\(k|{n\choose m}\),因为\(n!\)中质因子\(k\)的次数为\(S(n)=\left\lfloor\frac{n}{k}\right\rfloor+\left\lfloor\frac{n}{k^2}\right\rfloor+...\),而\(m!\)和\((n-m)!\)同理.所以如果\(S(n)>S(m)+S(n-m)\),那么\(k|{n\choose m}\) 不难发现,对于每一个\(k^i\),\(\left\lfloor\frac{n}{k^i}\r…
为什么你们常数都这么小啊 UOJ #276 题意:在树上找一条链使得|边权平均值$ -k$|尽量小,$ n<=5e4$ $ Solution:$ 首先二分答案$ ans$,即我们需要找一条链使得边权平均值 $\in [-ans,ans]$ 我们分正负两半分开讨论 先假设平均值$ \in (0,ans]$ 将原树点分 统计过根的所有链 将这些链记录长度$len$,边数$sum$,所属子树标号$id$之后按长度排序 添加一条链$(0,0,0)$,则过某点的链一定是某两条不在同一子树的链拼接而成 两条…
题目链接:http://uoj.ac/problem/273 $${Ans=\frac{\prod _{i=1}^{m}i}{w-n+1}}$$ #include<iostream> #include<cstdio> #include<algorithm> #include<vector> #include<cstdlib> #include<cmath> #include<cstring> using namespace…
http://uoj.ac/problem/274 由于边权互不相同,只需用lct维护带加边的最大生成树 #include<bits/stdc++.h> #define lc ch][0 #define rc ch][1 #define fa ch][2 #define rv ch][3 #define val ch][4 #define mv ch][5 #define len ch][6 #define sl ch][7 ; ],stk[N]; int _(){ ,c=getchar();…
http://uoj.ac/problem/272 这题的式子形式是异或卷积的三进制推广,因此可以设计一个类似fwt的变换,这里需要一个三次单位根$w$,满足$w^3\%p==1$且$(1+w+w^2)\%p==0$,对给定的模数,在整数中可能找不到满足要求的w,因此考虑模意义的复数域,发现只要用$a+b\frac{\sqrt{3}i}{2}$的形式表示复数,a,b为模p意义下的整数,可以满足要求.时间复杂度$O((m+log(t))3^m)$. #include<cstdio> typede…
题目描述 http://uoj.ac/problem/274 题解 语文题+LCT 对于这种语文题建议还是自己读题好一些... 读懂题后发现:由于温度互不相同,最大生成树上的路径必须走(不走的话温度大的边少了,字典序一定会更小),并且不能多走边(因为多走的话串会变长,长度大反而亏),因此答案就是最大生成树上的路径. 因此使用LCT维护最大生成树即可.维护两点之间权值最小的边.加边时如果已经连通,则判断加的边与最小的边那个大,如果新加的边大则删掉原来最小的边,加入新边. 至于边长度的处理,可以新建…
Code: 行#include<bits/stdc++.h> #define ll long long #define maxn 1000000 #define inf 1000000000000 using namespace std; void setIO(string s) { string in=s+".in",out=s+".out"; freopen(in.c_str(),"r",stdin); // freopen(ou…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ266.html 题解 首先我们可以直接暴力 $O(n^2)$ 用 sg 函数来算答案. 对于一个树就是枚举一下从根出发到哪一个节点为止的路径被删掉了,剩下所有的子树的sg值xor起来,对于每一个路径后的答案取一个 mex . 我们考虑快速的做这个过程. 直接写个 Trie 再 DSU on tree 就好了,只要支持查询 mex 和整棵 trie 对某一个值 xor 这两种操作就好了. 时间复杂度 $O…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ276.html 题解 首先,读入的时候就将所有的 $w_i$ 减掉 $k$ . 于是我们要求的就是平均值最接近 0 的. 直接点分治,然后得到一些一端为当前点分中心的路径,设 $a,b$ 为其中两条路径,设 $v_a,v_b$ 为路径的边权和,$t_a,t_b$ 为路径的边数. 二分一个答案,假设差别**小于** $A$.由于题目要求的是下取整,所以我们为了方便,设的是**小于** $A$ ,这样做,最…
传送门 组合数学妙题. 我们把这mmm个数都减去111. 然后出牌的地方就变成了−1-1−1. 然后发现求出每个位置的前缀和之后全部都是非负数. 考虑在最后加入一个−1-1−1构成一个m+1m+1m+1个数的序列. 那么对于这个序列的所有循环同构. 只有当前这种是合法的. 原因很简单. 最后一个位置的前缀和是−1-1−1,因此除了当前这种之外的循环同构必定有一个前缀和是负数. 反过来发现对于每一个不合法的,它一定有一个循环同构是合法的. 对于这个序列的总方案数只有m!m!m!种. 然后最后一个数…
题意 给出 \(n\) 个点的树,每个时刻可能出现一条路径 \(A_i\) 或者之前出现的某条路径 \(A_i\) 消失,每条路径有一个权值,求出在每个时刻过后能够找到的权值最大的路径(指所有和该路径有交的路径 \(A\) 的权值和) \(B\) 的权值是多少. \(n\leq 10^5\) 分析 结论:两条树上路径有交,则一定有一条路径经过另一条路径的 \(lca\). 根据上面的性质我们考虑用树形dp的方式求解. 将一条路径的权值在每个点 \(x\) 关系分成两种: \(a\) :路径的 \…
寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 "冻死宝宝了!" 这时 远处的天边出现了一位火焰之神 "我将赐予你们温暖和希望!" 只见他的身体中喷射出火焰之力 通过坚固的钢铁,传遍了千家万户 这时,只听见人们欢呼 "暖气来啦!" 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很低. 小R的宿舍楼中有 \(n\…
题目链接:Alice和Bob又在玩游戏 这道题就是一个很显然的公平游戏. 首先\(O(n^2)\)的算法非常好写.暴力枚举每个后继计算\(mex\)即可.注意计算后继的时候可以直接从父亲转移过来,没必要\(O(n)\)扫一遍所有节点 . 然后我们仔细看看转移,就可以发现这玩意儿就是一个集合,每次要支持集合异或上一个数,集合插入一个数,以及集合合并.然后我们用\(Trie\)树(其实就是线段树)来维护即可.每个节点记录一个\(size\),就可以从顶往下找\(mex\)了. 下面贴代码: #inc…