要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 在之前的开篇提到了text2vec,笔者将其定义为R语言文本分析"No.1",她是一个文本分析的生态系统.笔者在学习之后发现开发者简直牛!基于分享精神,将自学笔记记录出来.开篇内容参考: 重磅︱R+NLP:text2vec包--New 文本分析生态系统 No.1(一,简介) 文档可以以多种方式表达,单独词组.n-grams…
要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 在之前的开篇提到了text2vec,笔者将其定义为R语言文本分析"No.1",她是一个文本分析的生态系统.笔者在学习之后发现开发者简直牛!基于分享精神,将自学笔记记录出来.开篇内容参考: 重磅︱R+NLP:text2vec包--New 文本分析生态系统 No.1(一,简介) R+NLP︱text2vec包--BOW词袋模型…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 词向量的表示主流的有两种方式,一种当然是耳熟能详的google的word2vec,还有一类就是GloVe.那么前面一类有三个开源的包,后面这一类我倒是看到得不多,恰好是在我关注了许久的一个包里面有,它就是text2vec啦.该包提供了一个强大API接口,能够很好地处理文本信息. 本包是由C++写的,流处理器可以让内存得到更好的利用,一些地方是用…
  本文作为笔者NLP入门系列文章第一篇,以后我们就要步入NLP时代.   本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的相似度(余弦相似度,cosine similarity).   首先,让我们来看一下,什么是词袋模型.我们以下面两个简单句子为例: sent1 = "I love sky, I love sea." sent2 = "I like running, I love reading."   通常,NL…
TF-idf模型:TF表示的是词频:即这个词在一篇文档中出现的频率 idf表示的是逆文档频率, 即log(文档的个数/1+出现该词的文档个数)  可以看出出现该词的文档个数越小,表示这个词越稀有,在这篇文档中也是越重要的 TF-idf: 表示TF*idf, 即词频*逆文档频率 词袋模型不仅考虑了一个词的词频,同时考虑了这个词在整个语料库中的重要性 代码: 第一步:使用DataFrame格式处理数据,同时数组化数据 第二步:定义函数,进行分词和停用词的去除,并使用‘ ’连接去除停用词后的列表 第三…
函数说明: 1 CountVectorizer(ngram_range=(2, 2)) 进行字符串的前后组合,构造出新的词袋标签 参数说明:ngram_range=(2, 2) 表示选用2个词进行前后的组合,构成新的标签值 Ngram模型表示的是,对于词频而言,只考虑一个词,这里我们在CountVectorizer统计词频时,传入ngram_range=(2, 2)来构造新的词向量的组合 好比一句话'I like you' 如果ngram_range = (2, 2)表示只选取前后的两个词构造词…
函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string)  用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0-9\s]' 配对的模式,^表示起始位置,\s表示终止位置,[]表示取中间部分,这个的意思是找出除字符串大小写或者数字组成以外的东西,repl表示使用什么进行替换,这里使用'',即直接替换,string表示输入的字符串 2. stopwords = nltk.corpus.stopwords.word…
(1)词集模型(Set Of Words): 单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个. (2)词袋模型(Bag Of Words): 如果一个单词在文档中出现不止一次,并统计其出现的次数(频数). 为文档生成对应的词集模型和词袋模型 考虑如下的文档: dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to…
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视觉的,但计算机视觉会使用该概念的升级.词袋最早出现在神经语言程序学(NLP)和信息检索(IR)领域,该模型忽略掉文本的语法和语序,用一组无序的单词来表达一段文字或者一个文档. 我们使用BOW在一系列文档中构建一个字典,然后使用字典中每个单词次数构成向量来表示每一个文档.比如: 文档1:I like…
计算机视觉中的词袋模型(Bow,Bag-of-words) Bag-of-words 读 'xw20084898的专栏'的blogBag-of-words model in computer vision Bag-of-words 模型 之前教研室有个小伙伴在做文本方面的东西,经常提及词袋模型,只知道是文本表示的一种,可是最近看的关于CV的论文中也出现BoW模型,就很好奇BoW到底是个什么东西. BoW起始可以理解为一种直方图统计,开始是用于自然语言处理和信息检索中的一种简单的文档表示方法. 和…