决策树归纳算法之ID3】的更多相关文章

本文介绍如何利用决策树/判定树(decision tree)中决策树归纳算法(ID3)解决机器学习中的回归问题.文中介绍基于有监督的学习方式,如何利用年龄.收入.身份.收入.信用等级等特征值来判定用户是否购买电脑的行为,最后利用python和sklearn库实现了该应用. 1.  决策树归纳算法(ID3)实例介绍 2.  如何利用python实现决策树归纳算法(ID3) 1.决策树归纳算法(ID3)实例介绍 首先介绍下算法基本概念,判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属…
学习是一个循序渐进的过程,我们首先来认识一下,什么是决策树.顾名思义,决策树就是拿来对一个事物做决策,作判断.那如何判断呢?凭什么判断呢?都是值得我们去思考的问题. 请看以下两个简单例子: 第一个例子 现想象一个女孩的母亲要给自己家的闺女介绍男朋友,女孩儿通过对方的一些情况来考虑要不要去,于是有了下面的对话: 女儿:多大年纪了?       母亲:26.       女儿:长的帅不帅?       母亲:挺帅的.       女儿:收入高不?       母亲:不算很高,中等情况.      …
前面学习了ID3,知道了有关“熵”以及“信息增益”的概念之后. 今天,来学习一下C4.5.都说C4.5是ID3的改进版,那么,ID3到底哪些地方做的不好?C4.5又是如何改进的呢? 在此,引用一下前人的总结: ID3算法是决策树的一个经典的构造算法,在一段时期内曾是同类研究工作的比较对象,但通过近些年国内外学者的研究,ID3算法也暴露出一些问题,具体如下: (1)信息增益的计算依赖于特征数目较多的特征,而属性取值最多的属性并不一定最优. (2)ID3是非递增算法. (3)ID3是单变量决策树(在…
决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序来分叉的. 其实这个也不一定局限于平衡树的解释.huffman编码就是这么干的:出现频率最高的编码一定是与root直接相连的,是层数最浅的. 什么是决策树 简单讲就是一棵多叉树,每个节点表示一个决策,它的不同分支表示依据决策结果划分的子类:子树要么仍然是决策数,要么是叶节点.叶节点表示原有label或某一个维…
http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q…
发现帮助新手入门机器学习的一篇好文,首先感谢博主!:用Python开始机器学习(2:决策树分类算法) J. Ross Quinlan在1975提出将信息熵的概念引入决策树的构建,这就是鼎鼎大名的ID3算法.后续的C4.5, C5.0, CART等都是该方法的改进. 熵就是“无序,混乱”的程度.刚接触这个概念可能会有些迷惑.想快速了解如何用信息熵增益划分属性,可以参考这位兄弟的文章:http://blog.csdn.net/alvine008/article/details/37760639 数据…
目录 决策树CART算法 一.决策树CART算法学习目标 二.决策树CART算法详解 2.1 基尼指数和熵 2.2 CART算法对连续值特征的处理 2.3 CART算法对离散值特征的处理 2.4 CART算法剪枝 2.4.1 生成剪枝后的决策树 2.4.2 选择最优子树 2.5 CART算法剪枝流程 2.5.1 输入 2.5.2 输出 2.5.3 流程 三.决策树CART算法流程 3.1 输入 3.2 输出 3.3 分类CART树算法流程 3.4 回归CART树算法流程 3.4.1 处理连续值…
决策树模型 内部节点表示一个特征或者属性,叶子结点表示一个类.决策树工作时,从根节点开始,对实例的每个特征进行测试,根据测试结果,将实例分配到其子节点中,这时的每一个子节点对应着特征的一个取值,如此递归的对实例进行测试并分配,直到达到叶节点,最后将实例分配到叶节点所对应的类中. 决策树具有一个重要的性质:互斥并且完备.每一个实例都被一条路径或一条规则所覆盖,而且只被一条路径或一条规则所覆盖,这里所谓覆盖是指实例的特征与路径上的特征一致或实例满足规则的条件. 决策树与条件概率分布 决策树将特种空间…
CART生成 CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支.这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限个单元,并在这些单元上确定预测的概率分布,也就是在输入给定的条件下输出的条件概率分布. CART算法由以下两步组成: 决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大: 决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时损失函数最小作为剪枝的标准. CART决策树的生成就是…
决策树分类算法 1.概述 决策树(decision tree)——是一种被广泛使用的分类算法. 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用. 2.算法思想 通俗来说,决策树分类的思想类似于找对象.现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢…