Andrew Ng的Machine Learning课程,在网易公开课上有中文版视频http://v.163.com/special/opencourse/machinelearning.html,六维上也有资源可以下载. 引言 machine learning 定义1:Field of study that gives computers the ability to learn without being explicitly programmed. machine learning 定义2…
斯坦福大学机器学习视频教程(附学习笔记,potplay播放器,PPT等资料),很具有学习价值. 链接:http://mooc.guokr.com/note/16274/…
Andrew Ng机器学习课程14 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要介绍了当数据量不足,利用EM算法对混合高斯模型进行建模时数据量比较少时,得到的协方差矩阵是一个奇异矩阵,即行列式为0,也就是协方差矩阵的逆矩阵是不存在的,所以也就无法使用混合高斯进行建模.需要对 协方差矩阵进行限制,比如对角阵或者是单位矩阵等.这样限制之后实际上是认为不同维的数据之间没有相关性,因此不能把握数据不同维之间的相关性.而本文介绍的factor ana…
Andrew Ng机器学习课程13 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要从一般的角度介绍EM算法及其思想,并推导了EM算法的收敛性.最后用一般的EM算法回顾了混合高斯模型的求解过程,并推导了通过EM算法求解混合高斯模型参数的过程.视频笔记会通过增补内容加以补充. 2015-9-30 艺少…
Andrew Ng机器学习课程12 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要讲述了batch learning和online learning的区别,然后介绍了经典的非监督算法:k-means算法.然后介绍了混合高斯模型以及求解时采用的EM算法.本文是基于lecture notes进行的总结,等上完视频课,会通过12课补充来丰富这些内容. 2015-9-29 艺少…
参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week 1 一. 引言 机器学习模型可分为监督学习Superviese learning(每个数据集给出了正确的值)和无监督学习Unsupervised learning(数据集只有特征,没有对应正确的值) 机器学习处理的问题可以分为Regression回归问题(结果是real-valued output连续的值)和Classification问题 (结果是discrete-valued离散的值) 二. 单变量线性回归(Linear R…
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propagation 5.3 神经网络总结 接上一篇4. Neural Networks (part one).本文将先定义神经网络的代价函数,然后介绍逆向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结. 5.1 cost func…
CMU在机器学习研究领域大名鼎鼎,Tom Mitchell 即是该学校老师.学校开设有机器学习课程.如今机器学习应用的领域越来越广泛,之前传统的<机器学习>课程,现在分成一般非机器学习领域学生的<机器学习导论>和<高级机器学习>课程. 一.机器学习入门课程 链接: Introduction to Machine Learning(2015-Fall By Alex Smola) Introduction to Machine Learning(2015-Fall By…
学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer certificate cannot be authenticated with given CA certificates. ' 我使用的是Win 7 64位操作系统,Octave 4.2.0, 然后我在课程论坛上发现这个问题还比较多,然后解决办法也很多, 后来仔细看了一下Mentor的解决方法,…
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮…