首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
无监督学习-K-means算法
】的更多相关文章
监督学习——K邻近算法及数字识别实践
1. KNN 算法 K-近邻(k-Nearest Neighbor,KNN)是分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. K邻近算法原理很简单,但是真正用好它也不容易,比如K的取值到底为多少才合适,而且知道什么场景下用它更不简单. 缺点: 该算法的执行效率并不高,每次计算都需要将 待识别的用例 与所有测试用例进行求差计算,计算量较大.随着测…
KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 4.训练过程:没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 5.K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label…
5.无监督学习-DBSCAN聚类算法及应用
DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1.核心点:在半径Eps内含有超过MinPts数目的点. 2.边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内的点. 3.噪音点:既不是核心点也不是边界点的点. 如下图所示:图中黄色的点为边界点,因为在半径Eps内,它领域内的点不超过MinPts个,我们这里设置的MinPts为5…
监督学习--k近邻算法
2017-07-20 15:18:25 k近邻(k-Nearest Neighbour, 简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单,对某个给定的测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个‘邻居’的信息进行预测.一般来说,在分类中采用‘投票法’,即选择的这k个样本中出现最多的类别标记作为预测结果. 优点:精度高,对异常值不敏感,无数据输入假定: 缺点:计算复杂度高.空间复杂度高:(对每个输入测试样本,需要计算其和所有训练样本的距离,并从中选择…
无监督学习——K-均值聚类算法对未标注数据分组
无监督学习 和监督学习不同的是,在无监督学习中数据并没有标签(分类).无监督学习需要通过算法找到这些数据内在的规律,将他们分类.(如下图中的数据,并没有标签,大概可以看出数据集可以分为三类,它就是一个无监督学习过程.) 无监督学习没有训练过程. 聚类算法 该算法将相似的对象轨道同一个簇中,有点像全自动分类.簇内的对象越相似它的分类效果越好. 未接触这个概念可能觉得很高大上,稍微看了一会其实算法的思路和KNN一样很简单. 原始数据集如下(数据有两个特征,分别用横纵坐标表示),原始数据集并没有任何标…
Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1.1.3 如何选择K值 1.1.4 Spark MLlib 实现 k-means 算法 1.2 Mixture of Gaussians and the EM algorithm 1.3 The EM Algorithm 1.4 Principal Components…
机器学习基础——简单易懂的K邻近算法,根据邻居“找自己”
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天的文章给大家分享机器学习领域非常简单的模型--KNN,也就是K Nearest Neighbours算法,翻译过来很简单,就是K最近邻居算法.这是一个经典的无监督学习的算法,原理非常直观,易于理解. 监督与无监督 简单介绍一下监督这个概念,监督是supervised的直译,我个人觉得不太准确,翻译成有标注和无标注可能更加准确.也就是说如果模型在学习的时候,既能够看到样本的特征又可以看到样本的结果,那么就是有监督学习,如果只能看到特征…
监督学习 VS 无监督学习
监督学习 就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力. 举个简单的例子,小时候老师教我们看图识物,图片是输入,老师的判断是输出,我们通过跟读.写来训练自己,久而久之大脑中会形成一些泛化得模型,以后遇到实物时不需要老师的提醒就可以知道这是什么类型的. 比较经典的监督学…
K-means算法
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? 那我们就用K-means算法进行划分吧. 算法很简单,这么做就可以啦: 第一步:随机初始化每种类别的中心点,u1,u2,u3,--,uk; 第二步:重复以下过程: 然后 ,就没有然后了,就这样子. 太简单, 不解释.…
<机器学习>无监督学习算法总结
本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方可以相互转化,还有一些变种的算法既有聚类功能又有降维功能,一些新出现的和尚在开发创造中的无监督学习算法正在打破聚类和降维的类别划分.另外因时间原因,可能有个别小错误,如有发现还望指出. 一.聚类(clustering) 1.k-均值聚类(k-means) 这是机器学习领域除了线性回归最简单的算法了.…