Spark 序列化问题】的更多相关文章

在Spark应用开发中,很容易出现如下报错: org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304) at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(C…
本文主要打算对spark内部的序列化机制以及在shuffle map中起衔接作用的MapOutputTracker做一下剖析.主要涉及具体实现原理以及宏观设计的一些思路. 1,spark序列化 任何一个分布式框架,序列化都是其必不可少并且很重要一部分,spark也不例外.spark设计序列化的主要类以及之间的依赖包含关系如下图: 上图中,虚线表示依赖关系,而实线表示继承关系.各个类的解释如下: a,SerializerManager可以认为是入口类,提供相关实现供外部序列化和反序列化时调用. b…
一.spark的序列化 1.1.官网解释 http://spark.apache.org/docs/2.1.1/tuning.html#data-serialization 序列化在任何分布式应用程序的性能中起着重要作用.将对象序列化或消耗大量字节的速度慢的格式将大大减慢计算速度.通常,这将是您应该优化Spark应用程序的第一件事.Spark旨在在便利性(允许您使用操作中的任何Java类型)和性能之间取得平衡.它提供了两个序列化库: Java序列化:默认情况下,Spark使用Java Objec…
spark序列化  对于优化<网络性能>极为重要,将RDD以序列化格式来保存减少内存占用. spark.serializer=org.apache.spark.serializer.JavaSerialization Spark默认 使用Java自带的ObjectOutputStream 框架来序列化对象,这样任何实现了 java.io.Serializable 接口的对象,都能被序列化.同时,还可以通过扩展 java.io.Externalizable 来控制序列化性能.Java序列化很灵活…
[Java序列化与反序列化] Java序列化是指把Java对象转换为字节序列的过程:而Java反序列化是指把字节序列恢复为Java对象的过程.序列化使用场景:1.数据的持久化,通过序列化可以把数据永久地保存到硬盘上(通常存放在文件里).2.远程通信,即在网络上传送对象的字节序列. 这篇文章写的不错https://blog.csdn.net/wangloveall/article/details/7992448 [Spark序列化与反序列化场景] 在Spark中,主要有三个地方涉及序列化与反序列化…
序列化 背景: 在以下过程中,需要对数据进行序列化: shuffling data时需要通过网络传输数据 RDD序列化到磁盘时 性能优化点: Spark默认的序列化类型是Java序列化.Java序列化的优势是兼容性好,不需要自已注册类.劣势是性能差.为提升性能,建议使用Kryo序列化替代默认的Java序列化.Kryo序列化的优势是速度快,体积小,劣势是兼容性差,需要自已注册类. 序列化的配置项:spark.serializer 使用方法1 1 2 3 val conf = new SparkCo…
Spark序列化这块网上讲的比较少,自己还没来得及看这块代码,今天编程的时候遇到一个Hadoop的Writerable实现在Spark无法序列化的问题.我的代码如下: object EntryApp extends App{ val conf = new SparkConf().setAppName("cgbdata").setMaster("local") val sc = new SparkContext(conf) val hadoopConfig = new…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3833985.html 最近在使用spark开发过程中发现当数据量很大时,如果cache数据将消耗很多的内存.为了减少内存的消耗,测试了一下 Kryo serialization的使用 代码包含三个类,KryoTest.MyRegistrator.Qualify. 我们知道在Spark默认使用的是Java自带的序列化机制.如果想使用Kryo serialization,只需要添加KryoTest类中的红…
1.使用SparkConf配置Spark (1)在java中使用SparkConf创建一个应用: SparkConf conf =;i++){ javaBean bean =new javaBean(i); list.add(bean); } JavaRDD<javaBean> rdd =sc.parallelize(list); for(javaBean bean:rdd.collect()) System.out.println(bean); }} 来自为知笔记(Wiz)…
spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍. 适用场景广泛 => 大数据分析统计,实时数据处理,图计算及机器学习 易用性 => 编写简单,支持80种以上的高级算子,支持多种语言,数据源丰富,可部署在多种集群中 容错性高.Spark引进了弹性分布式数据集RDD (Resil…