可以证明,如果合并两棵树,新的直径的端点一定是原来两树中直径的端点 可以把新加两个点的操作看成是把两个只有一个点的树合并到原来的树上,然后用其中的一个点去和原来树上的直径两端点更新直径就可以了 #include<bits/stdc++.h> #define pa pair<int,int> #define CLR(a,x) memset(a,x,sizeof(a)) using namespace std; typedef long long ll; ; inline ll rd(…
2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=2243 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”.“222”和“1”. 请你写…
题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略的.于是vfleaking决定写一个玩Nim游戏的平台来坑玩家.为了设计漂亮一点的初始局面,vfleaking用以下方式来找灵感:拿出很多石子,把它们聚成一堆一堆的,对每一堆编号1,2,3,4,...n,在堆与堆间连边,没有自环与重边,从任意堆到任意堆都只有唯一一条路径可到达.然后他不停地进行如下操…
E. Anton and Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output Anton is growing a tree in his garden. In case you forgot, the tree is a connected acyclic undirected graph. There are n v…
题目描述 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 输入 第一行N 第二行N个数分别表示1~N的点权v[i] 接下来N-1行每行两个数x.y,表示一条连接x和y的边 输出 一个数,表示最大的痛苦程度. 样例输入 3 5 3 5 1 2 1 3 样例输出 10 题解 树的直径+并查集 首先肯定是把权值从大到小排序,按照顺序加点,维护每个连通块的最长链乘以当前点权值作为贡献. 那么如何在加上一条边,连接两棵树后快速得出新的直径…
http://lightoj.com/volume_showproblem.php?problem=1094 Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the t…
题目大意: 给定一棵有n个节点的树,有黑点白点两种节点. 每一次操作可以选择一个同种颜色的联通块将其染成同一种颜色 现在给定一个初始局面问最少多少步可以让树变为纯色. 题解: 首先我们拿到这棵树时先将其缩点 然后我们手中的树就变成了一棵黑白相间的黑白树. 那么我们现在就是每次选择一个节点使其变色,都会使得这个节点相邻的所有节点合并进来. 所以我们找度数最大的合并就好了啊 我们现在把这棵树想象成由若干条路径组成的. 那么我们每次合并都会使某些路径的长度最多减少2 所以我们可以自然而然地想到一定是树…
前言 复习笔记第6篇. 求直径的两种方法 树形DP: dfs(y); ans=max( ans,d[x]+d[y]+w[i] ); d[x]=max( d[x],d[y]+w[i] ); int dis=dfs( v,u )+1; if ( f[u]<dis ) g[u]=f[u],f[u]=dis; else if ( g[u]<dis ) g[u]=dis; ans=max( ans,f[u]+g[u]+1 ); return f[u]; 两次 bfs/dfs: 从任意点出发,找到最远点l…
New Year Tree 我们假设当前的直径两端为A, B, 那么现在加入v的两个儿子x, y. 求直径的话我们可以第一次dfs找到最远点这个点必定为直径上的点, 然而用这个点第二次dfs找到最远点, 这两个点就是直径. 因为A, B现在是直径的两端, 那么从v点dfs找到的最远点必定为A或者B, 那么从 x dfs找到的最远点也必定为A或者B, 那么如果有 新的直径其中一个端点不会变, 当前图和原图的差别就是x和y, 那么比较dist(A, x), dist(B, x)和未加入前直径的长度就…
LINK:Expected diameter of a tree 1e5 带根号log 竟然能跑过! 容易想到每次连接两个联通快 快速求出直径 其实是 \(max(D1,D2,f_x+f_y+1)\) 其中\(D1,D2\)分别为两个联通块内的直径. \(f_x\)表示 从x出发的最长链. 这样容易想到 枚举一个块的点 然后其实要找到 \(C=max(D1,D2)\) 第一个位置满足\(>C-f_x-1\) 然后就能统计答案了. 排序后扫描 复杂度要高 不如排序后二分. 然后加一个记忆化就过了.…