title:新的基于集成学习的移动广告作弊检测 导语:基于buzzcity数据集,我们提出了对点击欺诈检测是基于一组来自现有属性的新功能的一种新方法.根据所得到的精度.召回率和AUC对所提出的模型进行评估.最后的模型基于6种不同的学习算法.我们用刚才说的三种指标,来证明模型是稳定的.我们的最终模型在训练.验证和测试数据集上显示了改进的结果,从而证明了它对不同数据集的普遍性. 1.Introduction 导入 大部分都是废话 1.1 Problem Formulation 问题构建 数据是用的b…
这篇论文非常适合工业界的人(比如我)去读,有很多的借鉴意义. 强烈建议自己去读. title:五年微软经验的点击欺诈检测 摘要:1.微软很厉害.2.本文描述了大规模数据挖掘所面临的独特挑战.解决这一问题的技术的设计选择和原理,并举例说明了该系统在打击点击欺诈方面的有效性和一些定量结果. 1.What is Click Fraud? 什么是点击欺诈 Click fraud is the term used to describe artificial clicks generated on adv…
原文翻译 导读 这篇文章的主要工作在于应用了对抗训练(adversarial training)的思路来解决开放式对话生成(open-domain dialogue generation)这样一个无监督的问题. 其主体思想就是将整体任务划分到两个子系统上,一个是生成器(generative model),利用seq2seq式的模型以上文的句子作为输入,输出对应的对话语句:另一个则是一个判别器(discriminator),用以区分在前文条件下当前的问答是否是和人类行为接近,这里可以近似地看作是一…
NLP论文泛读之<教材在线评论的情感倾向性分析> 本文借助细粒度情感分类技术, 对从网络上抓取大量计算机专业本科教材的评价文本进行情感极性 分析, 从而辅助商家和出版社改进教材的质量.制定 合理的销售策略, 并为潜在消费者的购买决策 供参 考依据. 主要解决了什么问题? 分析.提取对计算机类教材有效的.可靠的评价(当当.京东平台) 1.部分评论有省略号 2.有些评论很简略,没有出现'书'这个主体对象 主要用到什么方法或技术 流程: Sep1.去噪 1.1 同一用户针对同一产品发表的多条相同评论…
摘要: 利用软件中的历史缺陷数据来建立分类器,进行软件缺陷的检测. 多核学习(Multiple kernel learning):把历史缺陷数据映射到高维特征空间,使得数据能够更好地表达: 集成学习(ensemble learning):使用一系列的分类器来减少由主类带来的分类误差,使具有更好的检测结果. 本文采用集成学习的方法构建一个多核分类器,集多核学习和集成学习的优点,提出方法: propose a multiple kernel ensemble learning (MKEL) appr…
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平凡的信息恰恰是深度学习所具备的特点.论文对基于深度的学习的推荐系统方法进行了对比以及分类.文章的主要贡献有以下三点: > 对基于深度学习技术的推荐模型进行系统评价,并提出一种分类和组织当前工作的分类方案. > 提供现有技术的概述和总结 > 我们讨论挑战和开放性问题,并确定本研究中的新趋势和未…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm for Deep Belief Nets.这篇论文一开始读起来是相当费劲的,学习了好几天才了解了相关的背景,慢慢的思路也开始清晰起来.DBN算法就是Wake-Sleep算法+RBM,但是论文对Wake-Sleep算法解释特别少.可能还要学习Wake-Sleep和RBM相关的的知识才能慢慢理解,今天…
if you aggregate the predictions of a group of predictors,you will often get better predictions than with the best individual predictor. a group of predictors is called an ensemble:this technique is called Ensemble Learning,and an Ensemble Learning a…
定义 集成学习是一种机器学习范式,其中多个学习器被训练来解决相同的问题. 这与试图从训练数据中学习一个假设的普通机器学习方法相反,集成方法尝试构造一组假设并将它们结合使用. 一个集合包含一些通常被称为基础学习器的学习器. 一个集合的泛化能力通常比单个基础学习器的泛化能力强得多. 实际上,集成学习具有极大吸引力,因为它可以将弱于随机猜测的弱学习器提升为能够做出非常准确预测的强大学习器. 所以,“基础学习器”也被称为“弱学习器”. 然而,值得注意的是,尽管大多数理论分析都是针对弱学习器的,但实践中使…
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys · July 2017) [论文作者] SHUAI ZHANG, University of New South WalesLINA YAO, University of New South WalesAIXIN SUN, Nanyang Technological UniversityYI TAY…
1. ensemble learning 集成学习 集成学习是通过构建并结合多个学习器来完成学习任务,如下图: 集成学习通过将多个学习学习器进行结合,常可以获得比单一学习器更优秀的泛化性能 从理论上来说,使用"弱学习器"集成足以获得好的性能,当实践中出于种种考虑,人们往往会使用比较强的学习器. 以下面为例,集成学习的结构通过投票法Voting(少数服从多数)产生: 由上面可以看出:个体学习器应该"好而不同",即个体学习器要有一定的"准确性",并且…
Bagging 全称是 Boostrap Aggregation,是除 Boosting 之外另一种集成学习的方式,之前在已经介绍过关与 Ensemble Learning 的内容与评价标准,其中“多样性”体现在应尽可能的增加基学习器的差别.Bagging 主要关注增大 “多样性”,他的做法是这样的,给定训练集 $D$ ,对 $D$ 进行 Bootstrap 采样,得到若干个不同的子集,Bootstrap 会确保各个子集有一定的交集,分别在各个子集上训练得到基分类器并且组合起来共同进行决策. B…
Java 垃圾回收(GC) 泛读 文章地址:https://segmentfault.com/a/1190000008922319 0. 序言 带着问题去看待 垃圾回收(GC) 会比较好,一般来说主要的疑惑在于这么几点: 为什么需要 GC ? 虚拟机(JVM) 与 垃圾回收(GC) 的关系? GC 的原理有哪些? 哪些 对象容易被 GC ? 等等 带着这些问题往下看: 1. 为什么需要 GC ? GC: 是Garbage Collection 的英文缩略,垃圾收集的意思. 为什么需要 GC? 主…
Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. 而Boosting在维基中被定义为一种主要用来减少偏差(Bias)和同时也可降低方差(Variance)的机器学习元算法,是一个将弱学习器转化为强学习器的机器学习算法族.最初由Kearns 和 Valiant (1988,1989)提出的一个问题发展而来:Can a set of weak lear…
俗话说,三个臭皮匠顶个诸葛亮.类似的,如果集成一系列分类器的预测结果,也将会得到由于单个预测期的预测结果.一组预测期称为一个集合(ensemble),因此这一技术被称为集成学习(Ensemble Learning).集成学习算法称作集成方法(Ensemble method). 例如,可以基于训练集的不同随机子集,训练一组决策树分类器.做预测是,首先拿到每一个决策树的预测结果,得票数最多的一个类别作为最终结果,这就是随机森林. 此外,通常还可以在项目的最后使用集成方法.比如已经创建了几个不错的分类…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
Robust Deep Multi-modal Learning Based on Gated Information Fusion Network 2018-07-27 14:25:26 Paper:https://arxiv.org/pdf/1807.06233.pdf  Related Papers:   1. Infrared and visible image fusion methods and applications: A survey Paper 2. Chenglong Li…
Deep Reinforcement Learning Based Trading Application at JP Morgan Chase https://medium.com/@ranko.mosic/reinforcement-learning-based-trading-application-at-jp-morgan-chase-f829b8ec54f2 FT released a story today about the new application that will op…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 到现在…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. AdaBoo…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 如果读…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 相信看…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 前面我…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 前面从…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 我们之…
1. ensemble learning 集成学习 集成学习是通过构建并结合多个学习器来完成学习任务,如下图: 集成学习通过将多个学习学习器进行结合,常可以获得比单一学习器更优秀的泛化性能 从理论上来说,使用“弱学习器”集成足以获得好的性能,当实践中出于种种考虑,人们往往会使用比较强的学习器. 以下面为例,集成学习的结构通过投票法Voting(少数服从多数)产生: 由上面可以看出:个体学习器应该“好而不同”,即个体学习器要有一定的“准确性”,并且彼此间要有差异. 从理论上来说,假设个体学习器的误…
一.集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好).集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即便某一个弱分类器得到了错误的预测,其他的弱分类器也可以将错误纠正回来. 集成方法是将几种机器学习技术组合成一个预测模型的元算法,以达到减小方差(bagging).偏差(boosting)或改进预测(sta…
Ensemble Learning是机器学习里最常见的建模方法,RandomForest 和 GBDT 采用了Ensemble Learning模式,只是具体方法不同. 下面简单翻译下一 https://www.analyticsvidhya.com/blog/2015/09/questions-ensemble-modeling/ 这篇文章,再来理解一下Ensemble Learning模式. 与Ensemble Learning相关的常见问题 1.什么是Ensemble Learning?…
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting noncoding variants- 非常好的学习资料 这篇文章的第一个亮点就是直接从序列开始分析,第二就是使用深度学习获得了很好的预测效果. This is, to our knowledge, the first approach for prioritization of functional…