Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1249    Accepted Submission(s): 408 Problem Description There are N buildings standing in a straight line in the City, numbere…
题目大意:n幢楼,从左边能看见f幢楼,右边能看见b幢楼 楼高是1~n的排列. 问楼的可能情况 把握看到楼的本质! 最高的一定能看见! 计数问题要向组合数学或者dp靠拢.但是这个题询问又很多,难以dp 如果把能看见的和之后挡住的看成一组的话... 那么可以看成这样: 每一组要固定第一个,,后面可以随便动,n!/n=(n-1)! 第一类斯特林数圆排列! 可分成的组数是:S[n-1][f+b-2](扣除中间最高的) 每一个圆排列只有最大值靠前的唯一展开方式 所以方案数是S[n-1][f+b-2]*C(…
有n(<=2000)栋楼排成一排,高度恰好是1至n且两两不同.现在从左侧看能看到f栋,从右边看能看到b栋,问有多少种可能方案. T组数据, (T<=100000) 自己只想出了用DP搞 发现最高的楼一定能看到,分成了左右两个问题 f[i][j]表示i栋楼从左面可以看到j栋方案数,转移枚举最高楼左面有几栋楼,乘上个组合数和剩下的排列 问题是DP完了求ans需要O(n)枚举最高楼在哪........ 然后发现好多人用了第一类sirtling数 考虑一栋被看到的楼,它会挡住它右面的几栋楼,这几栋楼可…
题目大意 n栋楼有n个不同的高度 现在限制从前面看有F个点,后面看有B个点 分析 最高那栋楼哪都可以看到 剩下的可以最高那栋楼前面分出F-1个组 后面分出B-1个组 每个组的权值定义为组内最高楼的高度 那么\(\binom {F+B-2}{F-1}\)分好组后,组和组之间的顺序是唯一确定的 而且要满足最高楼前面的组,每组最高楼在最左(不然最高楼左边的组内成员能被看到) 在最高楼后面的组同理 确定好每组最高楼后,剩下的楼可以任意排序 又有这样一个结论: (n-1)个点的排列数=n个点的轮换数 那就…
题目链接:https://vjudge.net/problem/HDU-4372 Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2509    Accepted Submission(s): 815 Problem Description There are N buildings standin…
[Hdu4372] Count the Buildings Description There are N buildings standing in a straight line in the City, numbered from 1 to N. The heights of all the buildings are distinct and between 1 and N. You can see F buildings when you standing in front of th…
题面 (笔者翻译) There are N buildings standing in a straight line in the City, numbered from 1 to N. The heights of all the buildings are distinct and between 1 and N. 有n座高楼,从左往右数第 i 座楼的高度为 ai,每座高楼高度互不相同,且 1 ≤ ai ≤ n ,换言之,n座高楼高度形成的序列为1~n的一个排列. You can see…
Description $N$座高楼,高度均不同且为$1~N$中的数,从前向后看能看到$F$个,从后向前看能看到$B$个,问有多少种可能的排列数. $T$组询问,答案模$1000000007$.其中$n\leq 2000,T\leq 100000$ 题解: 可以考虑现将最高的拿出来,那么可以考虑左边需要有$F-1$个房子成递增关系,那么可以将左边的房子分成$F-1$个组,右边有$B-1$个房子成递减关系,也是如此. 不禁想到第一类斯特林数,$s(p,k)$是将将$p$个物体排成$k$个非空循环排…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4372 首先,最高的会被看见: 然后考虑剩下 \( x+y-2 \) 个被看见的,每个带了一群被它挡住的楼,其实方案数是圆排列,每个圆从最高的楼开始断掉都是不同的方案: 再把这 \( x+y-2 \) 个圆排列分成两组放左右两边,它们按最高楼的高度就自动有顺序了,不必再算: \( s[i][j] \) 表示第一类斯特林数,答案就是 \( s[n-1][x+y-2] * C_{x+y-2}^{x-1} \)…
[题解]CJOI2019 登峰造鸡境 (Prufer序列+斯特林数) 题目背景 舒服了. 题目描述 你有一颗n个点的无根树,每个点有有一个标号(1~n). 现在你知道,总共有m个叶子节点,求不同的树的形态方案数. 答案对\(10^9+7\)取模. 下面是一些可能有用的定义: 叶子:度数为1的点. 不同:若对于两颗标号相同的树\(T1=(V,E_1),T2=(V,E_2)\),\(T1\neq T2\)当且仅当存在\((u,v) \in E_1 ,(u,v) \notin E_2\) 输入格式 一…