pandas之concat链接操作】的更多相关文章

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,keys=None, levels=None, names=None, verify_integrity=False) objs:   series,dataframe或者是panel构成的序列listaxis:需要合并链接的轴,0是行,1是列 join: 连接的方式 :inner,outer 1.相同字段的表首尾相接 import pandas pd…
今天是pandas数据处理第8篇文章,我们一起来聊聊dataframe的合并. 常见的数据合并操作主要有两种,第一种是我们新生成了新的特征,想要把它和旧的特征合并在一起.第二种是我们新获取了一份数据集,想要扩充旧的数据集.这两种合并操作在我们日常的工作当中非常寻常,那么究竟应该怎么操作呢?让我们一个一个来看. merge 首先我们来看dataframe当中的merge操作,merge操作类似于数据库当中两张表的join,可以通过一个或者多个key将多个dataframe链接起来. 我们首先来创建…
本文摘自:http://pandas.pydata.org/pandas-docs/stable/merging.html 前提: ide: liuqian@ubuntu:~$ ipython 准备: In [1]: import pandas as pd In [2]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], ...: 'B': ['B0', 'B1', 'B2', 'B3'], ...: 'C': ['C0', 'C1', 'C2…
# -*- coding: utf-8 -*- import numpy as np import pandas as pd #一.创建数据 #1.通过传递一个list对象来创建一个Series,pandas会默认创建整型索引 s = pd.Series([1,3,np.nan,5,8]) #2.通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame dates = pd.date_range(',periods = 6) df1 = pd.DataFrame(np.…
欢迎转载,转载请标明出处: http://blog.csdn.net/johnny901114/article/details/51568562 本文出自:[余志强的博客] 一.concat操作符概述 从concatMap操作我们知道,concat操作符肯定也是有序的,而concat操作符是接收若干个Observables,发射数据是有序的,不会交叉. 下面看看官方文档和流程图的说明: Returns an Observable that emits the items emitted by t…
这一次我的学习笔记就不直接用官方文档的形式来写了了,而是写成类似于“知识图谱”的形式,以供日后参考. 下面是所谓“知识图谱”,有什么用呢? 1.知道有什么操作(英文可以不看) 2.展示本篇笔记的结构 3.以后忘记某个函数某个参数时,方便查询   原来写的地方是,那儿的代码看起来会舒服很多: https://www.yuque.com/u86460/dgt6mu/tlywuc      创建 df.Dataframe(data,index) 1.data类型是字典 字典由series构成 >>&…
阅读之前假定你已经有了python内置的list和dict的基础.这里内容几乎是官方文档的翻译版本.   概览: ​   原来的文档是在一个地方,那边的代码看起来舒服些   https://www.yuque.com/u86460/dgt6mu/bx0m4g 一个要铭记在新的基本特点是 数据对齐 要点:索引,轴标签,生成实例时传入的数据类型 ​   #*生成:pd.Series(data,index)        data是传入的数据,index是第一列的名称(即标签)      (其他不常用…
pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.而且concat中有很多参数可以调整,合并成你想要的数据形式. 1.axis(合并方向):axis=0是预设值,因此未设定任何参数时,函数默认axis=0. >>> import pandas as pd >>> import numpy as np #定义资料集 >>> df1 = pd.DataFrame(np.ones((3,4))*0, colum…
连接的一个有用的快捷方式是在Series和DataFrame实例的append方法.这些方法实际上早于concat()方法. 它们沿axis=0连接 #encoding:utf8 import pandas as pd one = pd.DataFrame({ 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5'], 'Marks_scored':…
在此我用的concat作用是加入新的记录,存储数据来用过的,不知道数据量大时候,效率会怎样 # 使用pandas来保存数据 df1 = pd.DataFrame([poem], columns=['poetry_content']) df = pd.concat([df, df1], sort=True, ignore_index=True) 注意:要有ignore_index=True,要不然你的DataFrame的索引一直都会是零!…