PyTorch专栏(五):迁移学习】的更多相关文章

迁移学习教程 来自这里. 在本教程中,你将学习如何使用迁移学习来训练你的网络.在cs231n notes你可以了解更多关于迁移学习的知识. 在实践中,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对较少.相反,通常在非常大的数据集(例如ImageNet,它包含120万幅.1000个类别的图像)上对ConvNet进行预训练,然后使用ConvNet作为初始化或固定的特征提取器来执行感兴趣的任务. 两个主要的迁移学习的场景如下: Finetuning the conve…
PyTorch 原文: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 参考文章: https://www.cnblogs.com/king-lps/p/8665344.html https://blog.csdn.net/shaopeng568/article/details/95205345 https://blog.csdn.net/yuyangyg/article/details/8001857…
本demo从pytorch官方的迁移学习示例修改而来,增加了以下功能: 根据AUC来迭代最优参数: 五折交叉验证: 输出验证集错误分类图片: 输出分类报告并保存AUC结果图片. import os import numpy as np import torch import torch.nn as nn from torch.optim import lr_scheduler import torchvision from torchvision import datasets, models,…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
一.介绍 内容 使机器能够"举一反三"的能力 知识点 使用 PyTorch 的数据集套件从本地加载数据的方法 迁移训练好的大型神经网络模型到自己模型中的方法 迁移学习与普通深度学习方法的效果区别 两种迁移学习方法的区别 二.从图片文件中加载训练数据 引入相关包 下载网盘链接:https://pan.baidu.com/s/1OgknV6OUB-27DED6KSZ0iA 提取码:ekc9 import torch import torch.nn as nn import torch.op…
https://github.com/chenyuntc/pytorch-book/blob/v1.0/chapter5-常用工具/chapter5.ipynb 希望大家直接到上面的网址去查看代码,下面是本人的笔记 在训练神经网络过程中,需要用到很多工具,其中最重要的三部分是:数据.可视化和GPU加速.本章主要介绍Pytorch在这几方面的工具模块,合理使用这些工具能够极大地提高编码效率. 1.数据处理 PyTorch提供了几个高效便捷的工具,以便使用者进行数据处理或增强等操作,同时可通过并行化…
引自:http://blog.csdn.net/sinat_26917383/article/details/72982230 之前在博客<keras系列︱图像多分类训练与利用bottleneck features进行微调(三)>一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的fine-tuning. 看到github上有一份InceptionV3的fine-tuning并且可以实现. 我看到的keras微调的方式分为以下两种: fin…
概述 迁移学习可以改变你建立机器学习和深度学习模型的方式 了解如何使用PyTorch进行迁移学习,以及如何将其与使用预训练的模型联系起来 我们将使用真实世界的数据集,并比较使用卷积神经网络(CNNs)构建的模型和使用迁移学习构建的模型的性能 介绍 我去年在一个计算机视觉项目中工作,我们必须建立一个健壮的人脸检测模型. 考虑到我们拥有的数据集的大小,从头构建一个模型是一个挑战.从头构建将是一个耗时又消耗计算资源的方案.由于时间紧迫,我们必须尽快找出解决办法. 这就是迁移学习拯救我们的时候.这是一个…
Pytorch迁移学习实现驾驶场景分类 源代码:https://github.com/Dalaska/scene_clf 1.安装 pytorch 直接用官网上的方法能装上但下载很慢.通过换源安装发现torchvision找不到.还有一个方法是下载.whl然后用pip install安装. pip install .\torch-1.4.0+cu92-cp37-cp37m-win_amd64.whl .\torchvision-0.5.0+cu92-cp37-cp37m-win_amd64.wh…
迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改预训练好的resnet18网络在私人数据集上进行训练来分类蚂蚁和蜜蜂 数据集下载 这里使用的数据集包含ants和bees训练图片各约120张,验证图片各75张.由于数据样本非常少,如果从0初始化一个网络进行训练很难有令人满意的结果,这时候迁移学习就派上了用场.数据集下载地址,下载后解压到项目目录 导…
训练源码: 源码仓库:https://github.com/pytorch/tutorials 迁移学习测试代码:tutorials/beginner_source/transfer_learning_tutorial.py 准备工作: 下载数数据集:https://download.pytorch.org/tutorial/hymenoptera_data.zip          -->  tutorials/beginner_source/data/hymenoptera_data 下载与…
迁移学习包含两种:微调和特征提取器. 微调:对整个网络进行训练,更新所有参数 特征提取器:只对最后的输出层训练,其他层的权重保持不变 当然,二者的共性就是需要加载训练好的权重,比如在ImageNet上训练过的vgg,resnet等等. 那么,不管是微调还是特征提取器,大致都要遵从四个步骤. 初始化预训练的模型,即将预训练的权重加载进来 将最后的输出层维度改为我们期望的维度,从ImageNet预训练好的输出维度为1000,要根据需求进行更改 定义需要优化的参数,这里是微调和特征提取器的不同之处 进…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经网络 PyTorch 图像分类器 PyTorch 数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchV…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经网络 PyTorch 图像分类器 PyTorch 数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchV…
目前研究人员正在使用的深度学习框架不尽相同,有 TensorFlow .PyTorch.Keras等.这些深度学习框架被应用于计算机视觉.语音识别.自然语言处理与生物信息学等领域,并获取了极好的效果.其中,PyTorch是当前难得的简洁优雅且高效快速的框架,当前开源的框架中,没有哪一个框架能够在灵活性.易用性.速度这三个方面有两个能同时超过PyTorch. 基于此,磐小仙邀请到了作者 News(CS硕士) ,在接下来的这段时间里,他将会给大家带来关于PyTorch的一个专栏. 这个专栏主要针对想…
目录 一.例子:句子分类 二.模型架构 模型的输入 模型的输出 三.与卷积网络并行 四.嵌入表示的新时代 回顾一下词嵌入 ELMo: 语境的重要性 五.ULM-FiT:搞懂NLP中的迁移学习 六.Transformer:超越LSTM 七.OpenAI Transformer:为语言建模预训练一个Transformer解码器 八.在下游任务中使用迁移学习 九.BERT:从解码器到编码器 MLM语言模型 两个句子的任务 解决特定任务的模型 用于特征提取的BERT 十.把BERT牵出来遛一遛 本文翻译…
说起来这门技术大多是秀的成分高于实际,但是呢,其也可以作为图像增强的工具,看到一些比赛拿他作训练集扩充,还是一个比较好的思路.如何在caffe上面实现简单的风格转化呢? 好像网上的博文都没有说清楚,而且笔者也没有GPU机器,于是乎,走上了漫漫的研究逼死自己之路... 作者实践机器配置: 服务器:ubuntu16.04(8 core)+caffe+only CPU 突然觉得楷体是不是好看多了...哈哈,接下来的博客要改字体喽~ ------------------------------ 一.图像…
笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正好有做过猫狗大战数据集的图像分类,做好的数据都还在,二话不说,开撸. 既然是VGG16模型,当然首先上模型代码了: def conv_layers_simple_api(net_in): with tf.name_scope('preprocess'): # Notice that we inclu…
迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新的领域,从而不需要过多的样本数据,也能达到大批量数据所达成的效果,进一步节省了学习的计算量和时间. MobileNet V2是由谷歌在2018年初发布的一个视觉模型,在Keras中已经内置的并使用ImageNet完成了训练,可以直接拿来就用,这个我们在本系列第五篇中已经提过了.MobileNet V…
最近学习了TensorFlow,发现一个模型叫vgg16,然后搭建环境跑了一下,觉得十分神奇,而且准确率十分的高.又上了一节选修课,关于人工智能,老师让做一个关于人工智能的试验,于是觉得vgg16很不错,可以直接用. 但发现vgg16是训练好的模型,拿来直接用太没水平,于是网上发现说可以用vgg16进行迁移学习. 我理解的迁移学习: 迁移学习符合人们学习的过程,如果要学习一样新东西,我们肯定会运用或是借鉴之前的学习经验,这样能够快速的把握要点,能够快速的学习.迁移学习也是如此. vgg16模型是…
在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用. 一 简介 slim被放在tensorflow.contrib这个库下面,导入的方法如下: import tensorflow.contrib.slim as slim 这样我们就可以使用slim了,既然说到了,先来了解tensorflow.contrib这个库,tensorflow官方对它的描述…
完全版见github:TransforLearning 零.迁移学习 将一个领域的已经成熟的知识应用到其他的场景中称为迁移学习.用神经网络的角度来表述,就是一层层网络中每个节点的权重从一个训练好的网络迁移到一个全新的网络里,而不是从头开始,为每特定的个任务训练一个神经网络. 假设你已经有了一个可以高精确度分辨猫和狗的深度神经网络,你之后想训练一个能够分别不同品种的狗的图片模型,你需要做的不是从头训练那些用来分辨直线,锐角的神经网络的前几层,而是利用训练好的网络,提取初级特征,之后只训练最后几层神…
解压文件命令: with zipfile.ZipFile('../data/kaggle_cifar10/' + fin, 'r') as zin: zin.extractall('../data/kaggle_cifar10/') 拷贝文件命令: shutil.copy(原文件, 目标文件) 一.整理数据 我们有两个文件夹'../data/kaggle_cifar10/train'和'../data/kaggle_cifar10/test',一个记录了文件名和类别的索引文件 我们的目的是在新的…
本文的keras后台为tensorflow,介绍如何利用预编译的模型进行迁移学习,以训练和识别自己的图片集. 官网 https://keras.io/applications/ 已经介绍了各个基于ImageNet的预编译模型,对于我们来说,既可以直接为我所用进行图片识别,也可在其基础上进行迁移学习,以满足自己的需求. 但在迁移学习的例子中,并不描述的十分详细,我将给出一个可运行的代码,以介绍如何进行迁移学习. from tensorflow.keras.applications.vgg19 im…
ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks,原作者保留版权 卷积神经网络在视觉识别任务上的表现令人称奇.好的CNN网络是带有上百万参数和许多隐含层的“庞然怪物”.事实上,一个不好的经验规则是:网络越深,效果越好.AlexNet,VGG,Inceptio…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 source data distribution)学习到的模型能够很好地适应一个与之相不同的目标问题(对应一个 target data distribution).比如垃圾邮件过滤问题(spam filtering problems). 1. 数学描述 X:input space(description…
原文地址: https://www.jiqizhixin.com/articles/2017-06-02-2 =================================================================== PS: 视频在原文中. 第四范式首席科学家杨强:AlphaGo的弱点及迁移学习的应对(附视频) 5 月 27-28 日,机器之心在北京顺利主办了第一届全球机器智能峰会(GMIS 2017),来自美国.加拿大.欧洲,香港及国内的众多顶级专家分享了精彩的主题…