https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 2018-03-07 前言 目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈. 多样化的数据.复杂的业务分析需求.系统稳定性.数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题.2018 年线上线下融合已成大势,苏宁易购提出并践行双线融合模式,提出了智…
本文基于<Spark 最佳实践>第6章 Spark 流式计算. 我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景.比如百度统计,它可以做流量分析.来源分析.网站分析.转化分析.另外还有特定场景分析,比如安全分析,用来识别 CC 攻击. SQL 注入分析.脱库等.这里我们简单实现一个类似于百度分析的系统. 代码见 https://github.com/libaoquan95/WebLogAnalyse 1.模拟生成 web log 记录…
Java,面试题,简历,Linux,大数据,常用开发工具类,API文档,电子书,各种思维导图资源,百度网盘资源BBS论坛系统 ERP管理系统 OA办公自动化管理系统 车辆管理系统 家庭理财系统 各种后台系统 一.面试题.简历资源 二.各类思维导图 三.大数据学习 四.Linux 五.各类常用开发工具类 六.百度网盘各类资源,包含java开发,项目实战,MYSQL,框架学习,大数据,Linux等等,应有尽有 百度网盘面试题资源 MySQL数据库 七.管理系统 程序员的道路,是一个不断不断不断学习的…
应用程序已经是近代的一个最重要的IT创新.应用程序是连接用户和数据之间的桥梁,提供即时訪问信息是最方便且呈现的方式也是easy理解的和令人惬意的. 然而,app开发人员.尤其是后端平台能力,一直在努力跟上用户的期望.记得第一次基于WAP技术的移动互联网的日子吗?过度炒作和预期不匹配的教训. 36大数据专稿,原文作者:Ronnie Beggs,  本文由36大数据翻译组-张小顺翻译向36大数据投稿,并授权36大数据独家公布.不论什么不表明来源于36大数据和译者的转载均为侵权. 在已经收录的app应…
来源: 慕课网 Spark SQL慕课网日志分析_大数据实战 目标: spark系列软件的伪分布式的安装.配置.编译 spark的使用 系统: mac 10.13.3 /ubuntu 16.06,两个系统都测试过 软件: hadoop,hive,spark,scala,maven hadoop伪分布式.spark伪分布式 详细: software 存放安装的软件包 app 所有软件的安装目录 data 课程中所有使用的测试数据目录 source 软件源码目录,spark 1)下载hadoop a…
一.前言 从20世纪90年代数字化医院概念提出到至今的20多年时间,数字化医院(Digital Hospital)在国内各大医院飞速的普及推广发展,并取得骄人成绩.不但有数字化医院管理信息系统(HIS).影像存档和通信系统(PACS).电子病历系统(EMR)和区域医疗卫生服务(GMIS)等成功实施与普及推广,而且随着日新月异的计算机技术和网络技术的革新,进一步为数字化医院带来新的交互渠道譬如:远程医疗服务,网上挂号预约. 随着IT技术的飞速发展,80%以上的三级医院都相继建立了自己的医院信息系统…
今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用场景等问得多.看来,还是非常注重基础的牢固.整个大数据开发技术,这几个技术知识点占了很大一部分.那本篇文章就着重介绍一下这几个技术知识点. 一.Hbase 1.1.Hbase是什么? HBase是一种构建在HDFS之上的分布式.面向列的存储系统.在需要实时读写.随机访问超大规模数据集时,可以使用HB…
  一.大数据简介 大数据是一个很热门的话题,但它是什么时候开始兴起的呢? 大数据[big data]这个词最早在UNIX用户协会的会议上被使用,来自SGI公司的科学家在其文章“大数据与下一代基础架构”[big data and the next wave of infrastress]中用它来描述数据的快速增长.现在一般用4V来表示,及大量[volume].多样[variety].快速[velocity]和价值[value]. 二.大数据时代所面临的问题 1.数据的快速增长使快速处理数据成为了…
首先给出原文链接: 原文链接 大数据本身是一个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你能够把它比作一个厨房所以须要的各种工具. 锅碗瓢盆,各有各的用处.互相之间又有重合.你能够用汤锅直接当碗吃饭喝汤,你能够用小刀或者刨子去皮. 可是每一个工具有自己的特性,尽管奇怪的组合也能工作,可是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器. HDFS(Hadoop Distributed File…
转自:https://www.cnblogs.com/reed/p/7730360.html 大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮.但是每个工具有自己的特性,虽然奇怪的组合也能工作,但是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器.HD…