读数据结构与算法分析 AVL树 带有平衡条件的二叉树,通常要求每颗树的左右子树深度差<=1 可以将破坏平衡的插入操作分为四种,最后通过旋转恢复平衡 破坏平衡的插入方式 描述 恢复平衡旋转方式 LL 在左儿子的左子树进行插入 右旋转 RR 在右儿子的右子树进行插入 左旋转 LR 在左儿子的右子树进行插入 先左旋转 后右旋转 RL 在右儿子的左子树进行插入 先右旋转 后左旋转 AVL树的实现 AVL树的节点声明 struct AvlNode ; typedef struct AvlNode *Poi…
最近数据结构刚好看到了伸展树,在想这个东西有什么应用,于是顺便学习一下. 二叉查找树(BST),对于树上的任意一个节点,节点的左子树上的关键字都小于这个节点的关键字,节点的右子树上的关键字都大于这个节点的关键字. 对二叉查找树进行中序遍历,可以得到一个有序的序列. 下面这些操作的期望复杂度是$O(log N)$,但是如果BST中的数据是有序的序列BST就会变成一条链,复杂度会退化成$O(N)$ 为了避免越界减少边界情况的特殊判断,一般在BST中额外插入一个关键码为正无穷和一个关键码为负无穷的节点…
概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后,学习伸展树是一件相当容易的事情.和以往一样,本文会先对伸展树的理论知识进行简单介绍,然后给出C语言的实现.后序再分别给出C++和Java版本的实现:这3种实现方式的原理都一样,选择其中之一进行了解即可.若文章有错误或不足的地方,希望您能不吝指出! 目录1. 伸展树的介绍2. 伸展树的C实现3. 伸展树的C测试…
伸展树概念 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由Daniel Sleator和Robert Tarjan创造. (01) 伸展树属于二叉查找树,即它具有和二叉查找树一样的性质:假设x为树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x].如果y是x的左子树中的一个结点,则key[y] <= key[x]:如果y是x的右子树的一个结点,则key[y] >= key[x]. (02) 除了拥有二叉查找树的性质…
目录 1 简介 2 基础操作 2.1 旋转 2.2 伸展操作 3 常规操作 3.1 插入操作 3.2 删除操作 3.3 查找操作 3.4 查找某数的排名.查找某排名的数 3.4.1 查找某数的排名 3.4.2 查找某排名的数 4 代码实现 5 经典应用 - 区间添加.删除.翻转 5.1 区间添加 5.2 区间删除 5.3 区间翻转 1 简介 伸展树(Splay Tree),是一种二叉搜索树(Binary Search Tree,又称二叉排序树Binary Sort Tree),由丹尼尔·斯立特(…
自己伸展树做的第一个题 poj 3580 supermemo. 题目大意 对一个数组进行维护,包含如下几个操作: ADD x, y, d 在 A[x]--A[y] 中的每个数都增加d REVERSE x, y 将 A[x]--A[y] 中的数进行反转,变为 A[y],A[y-1]....A[x+1],A[x] REVOLVE x, y, T 将 A[x]--A[y]中的数连续右移T次 INSERT x, P 在A后添加数P DELETE x 删除A[x] MIN x, y 查询A[x]--A[y…
递归反转 二分查找 AVL树 AVL简单的理解,如图所示,底部节点为1,不断往上到根节点,数字不断累加. 观察每个节点数字,随意选个节点A,会发现A节点的左子树节点或右子树节点末尾,数到A节点距离之差不会超过1 一旦添加一个数,使得二叉树结构,存在节点两边子树差大于1,若是右子树大,则左旋:左子树大,则右旋. 旋转规则关键节点就是这个A节点,右子树大,则A节点变为左子树,右子节点替代A节点位置并指向A 红黑树 节点是红色或黑色. 根节点是黑色. 每个叶子节点都是黑色的空节点(NIL节点). 每个…
文章图片和代码来自邓俊辉老师课件 概述 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由丹尼尔·斯立特Daniel Sleator 和 罗伯特·恩卓·塔扬Robert Endre Tarjan 在1985年发明的.(出处百度百科) 它的操作就是将访问到的元素放在根节点处.主要的操作就是 zip 和 zag 下面是空间/时间复杂度(出处) 算法分析 双层伸展 双层伸展的作用是提升了树平均的访问性能.构思的精髓 : 向上追溯两层,而…
树的概览 树是层级式的集合 树中最顶端的节点叫做根 个或多个后继(子节点). 没有子节点的节点叫做叶子节点 拥有子节点的节点叫做内部节点 ,其子节点位于层级1,依次类推.一个空树的层级为 -1 树的术语 术语概览 示列 普通的树和二叉树 二叉树中,每个节点最多只有两个子节点,分别称为左子节点和右子节点 树的递归定义 普通的树 要么为空,要么包含一个有限的节点的集合 T.有一个和所有其他节点不同的节点r,称为根.此外,集合 T - {r}可以被划分为不相边的子集.每个子集都是一个普通的树. 二叉树…
AVL树.splay树(伸展树)和红黑树比较 一.AVL树: 优点:查找.插入和删除,最坏复杂度均为O(logN).实现操作简单 如过是随机插入或者删除,其理论上可以得到O(logN)的复杂度,但是实际情况大多不是随机的.如果是随机的,则AVL    树能够达到比RB树更优的结果,因为AVL树的高度更低.如果只进行插入和查找,则AVL树是优于RB树的,因为RB树    更多的优势还是在删除动作上. 缺点:1)借助高度或平衡因子,为此需要改造元素结构,或额外封装-->伸展树可以避免. 2)实测复杂…