Platt SMO 和遗传算法优化 SVM】的更多相关文章

机器学习算法实践:Platt SMO 和遗传算法优化 SVM 之前实现了简单的SMO算法来优化SVM的对偶问题,其中在选取α的时候使用的是两重循环通过完全随机的方式选取,具体的实现参考<机器学习算法实践-SVM中的SMO算法>.(http://pytlab.github.io/2017/09/01/机器学习算法实践-SVM中的SMO算法/) 本文在之前简化版SMO算法的基础上实现了使用启发式选取α对的方式的Platt SMO算法来优化SVM.另外由于最近自己也实现了一个遗传算法框架GAFT,便…
机器学习算法实践:Platt SMO 和遗传算法优化 SVM 之前实现了简单的SMO算法来优化SVM的对偶问题,其中在选取α的时候使用的是两重循环通过完全随机的方式选取,具体的实现参考<机器学习算法实践-SVM中的SMO算法>.(http://pytlab.github.io/2017/09/01/机器学习算法实践-SVM中的SMO算法/) 本文在之前简化版SMO算法的基础上实现了使用启发式选取α对的方式的Platt SMO算法来优化SVM.另外由于最近自己也实现了一个遗传算法框架GAFT,便…
Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓非边界alpha指的就是那些不等于边界0或者C的alpha值.对整个数据集的扫描相当容易,而实现非边界alpha值的扫描时,首先需要建立这些alpha值的列表,然后再对这个表进行遍历.同时,该步骤会跳过那些已知的不会改变的alpha值,即. 在选择第一个alpha值后,算法会通过一个内循环来选择第二…
3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参数. 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 3.2.1 算法流程 遗传算法优化使用遗传算法优化BP神经网络的权值和阔值,种群中的每个个体都包含了一 个网络所有权值和阔值,个体通过适应度函数计算个体适应度值,遗传算法通过选择.交叉和变异操作找到最优适应度值对应个…
代码例如以下: function m_main() clear clc Max_gen = 100;% 执行代数 pop_size = 100;%种群大小 chromsome = 10;%染色体的长度 pc = 0.9;%交叉概率 pm = 0.25;%变异概率 gen = 0;%统计代数 %初始化 init = 40*rand(pop_size, chromsome)-20; pop = init; fit = obj_fitness(pop); [max_fit, index_max] =…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
第6章 支持向量机 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> 支持向量机 概述 支持向量机(Support Vector Machines, SVM):是一种机器学习算法. 支持向量(Support Vector)就是离分隔超平面最近的那些点. 机(Machine)…
完整版SMO算法与简单的SMO算法: 实现alpha的更改和代数运算的优化环节一模一样,唯一的不同就是选择alpha的方式.完整版应用了一些能够提速的方法. 同样使用Jupyter实现,后面不在赘述 参考地址:https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/6.SVM/svm-complete_Non-Kernel.py 1. 加载数据(与SMO相同) from numpy import * import matpl…
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…
内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. <机器学习实战>主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法.朴素贝叶斯算法.Logistic回归算法.支持向量机.AdaBoost集成方法.基于树的回归算法和分类回归树(CART)算法等.第三部分则重点介绍无监督…