论文源址:https://arxiv.org/abs/1811.12030 开源代码:未公开 摘要 本文提出了目标检测网络Grid R-CNN,其基于网格定位机制实现准确的目标检测.传统方法主要基于回归操作,Grid R-CNN则捕捉详细的空间信息,同时具有全卷积结构中对位置信息的敏感性.[ Instead of using only two independent points]是指CornerNet预测的不准确性.Grid R-CNN使用多点监督,用于编码更多的细节信息,同时降低了不准确的特…
Introduction (1)Motivation: 大量标记数据成本过高,采用半监督的方式只标注一部分的行人,且采用单样本学习,每个行人只标注一个数据. (2)Method: 对没有标记的数据生成一个伪标签(pseudo labels),将标记的数据和部分伪标签的数据作为扩充数据集进行训练. 但这种方法引入了很多不可信的训练样本,制约了训练模型的性能. (3)Contribution: ① 为了在单样本学习中更好的利用未标签数据,提出了步进学习方法EUG(Exploit the Unknow…
进行文本的检测的学习,开始使用的是ctpn网络,由于ctpn只能检测水平的文字,而对场景图片中倾斜的文本无法进行很好的检测,故将网络换为RRCNN(全称如题).小白一枚,这里就将RRCNN的论文拿来拜读一下,也记录一下自己阅读过程中的收获. 原英文论文网址:https://arxiv.org/abs/1706.09579 在这篇论文中,作者提出了Rotational Region CNN(旋转区域CNN?),据作者说可以检测场景图片中任意角度的文本.这个网络是在Faster R-CNN的基础上搭…
论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络由于其构建时固定的网络结构,因此只能处理模型的几何变换问题.本文主要介绍了两种增强CNN模型变换的模型,称为可变形卷积及可变形RoI pooling.二者都基于一种思路,通过额外增加模型的偏移及根据目标任务对此偏移量进行学习来增强空间采样位置.新模型可以取代CNN中的原有模型,可以通过反向传播算法进…
论文源址:https://arxiv.org/abs/1704.05776 开源代码:https://github.com/xiaohaoChen/rrc_detection 摘要 大多数目标检测及定位算法基于R-CNN类型的两阶段处理方法,第一阶段生成可行区域框,第二步对决策进行增强.尽管简化了训练过程,但在benchmark获得较高mAP的结果下,单阶段的检测方法仍无法匹敌两阶段的方法. 本文提出了一个新的单阶段的目标检测网络用于克服上述缺点,称为循环滚动卷积结构,在多尺寸feature m…
论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN可以在进行检测的同时,进行高质量的分割操作.基于Faster R-CNN并进行扩展,增加了一个分支在进行框识别的同时并行的预测目标的mask.Mask R-CNN易于训练,相比Faster R-CNN增加了一点点花销.此外,Mask R-CNN可以很容易扩展至其他任务中.如关键点检测.本文在COCO…
论文源址:https://arxiv.org/abs/1701.06659 开源代码:https://github.com/MTCloudVision/mxnet-dssd 摘要 DSSD主要是向目标检测结构中增加语义信息.本文首先结合ResNet-101与SSD,然后,在此基础上添加反卷积层用于增大目标检测中的语义信息,从而提高目标物体尤其是小物体检测的准确率.本文主要研究在前向过程中添加附加单元至可学习模型中,本文主要指在前馈过程中反卷积与训练的模型输出之间的连接. 介绍 本文结构 SSD+…
论文源址:https://arxiv.org/abs/1612.08242 代码:https://github.com/longcw/yolo2-pytorch 摘要 本文提出YOLO9000可以检测9000多个类别.改进的YOLOv2在VOC与COCO数据集上表现较好.通过使用多尺寸的训练方法,同一个YOLOv2模型可以在多尺寸上进行实现,准确率与速度上得到很好的权衡.超过了基于ResNet的Faster R-CNN和SSD.提出了标检测及分类的联合训练方法.基于此方法,同时,在COCO检测数…
论文源址:https://arxiv.org/abs/1710.08864 tensorflow代码: https://github.com/Hyperparticle/one-pixel-attack-keras 摘要 在对网络的输入上做点小处理,就可以改变DNN的输出结果.本文分析了一种极限条件下的攻击情形,只改变一个输入中的一个像素使网络的输出发生改变.本文提出了一个基于差分进化生成单像素的对抗性扰动.可以以最小攻击信息的条件下,对更多类型的网络进行欺骗.结果表明,CIFAR-10测试集上…
论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对Faster R-CNN的解读:https://www.cnblogs.com/pursuiting/ 摘要 目标检测依赖于区域proposals算法对目标的位置进行预测.SPPnet和Fast R-CNN已经减少了检测网络的运行时间.然而proposals的计算仍是一个重要的瓶颈.本文提出了一个R…