pandas.DataFrame.astype数据结构转换】的更多相关文章

网易云课堂该课程链接地址 https://study.163.com/course/courseMain.htm?share=2&shareId=400000000398149&courseId=1006383008&_trace_c_p_k2_=cd6d8636673a4b03b5f77ca55979c1a7 实际数据分析中,计算经常需要用到float浮点型数据,因此需要对其他数据类型转换.Python代码如下. 有时候调用pickle的dataframe数据可能出现问题,此时最…
pandas中的数据结构-DataFrame DataFrame是什么? 表格型的数据结构 DataFrame 是一个表格型的数据类型,每列值类型可以不同 DataFrame 既有行索引.也有列索引 DataFrame 常用于表达二维数据,但可以表达多维数据 DataFrame创建 从字典创建 >>> import pandas as pd >>> frame=pd.DataFrame(data) >>> data={'name':['a','b','…
pandas.DataFrame → array → list values 可以转成 array array.tolist() 可以转成 list >>> c 0 1 2 0 0 0 0 1 1 1 1 2 2 2 2 3 0 0 0 4 1 1 1 5 2 2 2 6 0 0 0 7 1 1 1 8 2 2 2 array([[0, 0, 0], [1, 1, 1], [2, 2, 2], [0, 0, 0], [1, 1, 1], [2, 2, 2], [0, 0, 0], [1,…
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典…
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings import filterwarnings # 由于create table if not exists总会抛出warning,因此使用filterwarnings消除 filterwarnings('ignore', category = MySQLdb.Warning) from sqlalchemy i…
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 applymap() 函数和pandas Series 的 apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象. 而pandas DataFrame 的  apply() 函数,虽然也是作用于DataFrame的每个值,但是接受的参数不是各个值本身,而是DataFrame里各行(…
上一篇pandas DataFrame apply()函数(1)说了如何通过apply函数对DataFrame进行转换,得到一个新的DataFrame. 这篇介绍DataFrame apply()函数的另一个用法,得到一个新的pandas Series: apply()中的函数接收的参数为一行(列),把一行(列)通过计算,返回一个值,最后返回一个Series: 下图展示了把DataFrame的各列转换成一个数,最后返回成一个Series: 举个栗子: import numpy as np imp…
pandas DataFrame的 applymap() 函数可以对DataFrame里的每个值进行处理,然后返回一个新的DataFrame: import pandas as pd df = pd.DataFrame({ 'a': [1, 2, 3], 'b': [10, 20, 30], 'c': [5, 10, 15] }) def add_one(x): return x + 1 print df.applymap(add_one) a b c 0 2 11 6 1 3 21 11 2…
pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd…
简单操作 Python-层次聚类-Hierarchical clustering >>> data = pd.Series(np.random.randn(10),index=[['a','a','a','b','b','c','c','d','d','d'],[1,2,3,1,2,1,2,3,1,2]]) >>> data a 1 -0.168871 2 0.828841 3 0.786215 b 1 0.506081 2 -2.304898 c 1 0.864875…