spark调优——算子调优】的更多相关文章

算子调优一:mapPartitions 普通的map算子对RDD中的每一个元素进行操作,而mapPartitions算子对RDD中每一个分区进行操作.如果是普通的map算子,假设一个partition有1万条数据,那么map算子中的function要执行1万次,也就是对每个元素进行操作. 如果是mapPartition算子,由于一个task处理一个RDD的partition,那么一个task只会执行一次function,function一次接收所有的partition数据,效率比较高. 比如,当…
RDD算子调优 不废话,直接进入正题! 1. RDD复用 在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示: 对上图中的RDD计算架构进行修改,得到如下图所示的优化结果: 2. 尽早filter 获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率. 本文首发于公众号:五分钟学大数据,欢迎围观 3. 读取大量小文件-用wholeTextFiles 当我们将一个文本文件读取为 RDD 时,输入的每一行都会…
[原创 Hadoop&Spark 动手实践 7]Spark 应用经验.调优与动手实践 目标: 1. 了解Spark 应用经验与调优的理论与方法,如果遇到Spark调优的事情,有理论思考框架. 2. 把调优的过程,进行动手实践,完成一些调优的优化过程,加深理解. 3. 做一个完整的调优的案例,再次加深自己对Spark调优的理解.…
Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调优 Spark面试题(七)--Spark程序开发调优 Spark面试题(八)--Spark的Shuffle配置调优 1.Shuffle优化配置 -spark.shuffle.file.buffer 默认值:32k 参数说明:该参数用于设置shuffle write task的BufferedOutp…
性能调优 代码应该运行的尽量快,而不是更快 - 理查德 在第一和第二部分,我们了解了Core Animation提供的关于绘制和动画的一些特性.Core Animation功能和性能都非常强大,但如果你对背后的原理不清楚的话也会降低效率.让它达到最优的状态是一门艺术.在这章中,我们将探究一些动画运行慢的原因,以及如何去修复这些问题. CPU VS GPU 关于绘图和动画有两种处理的方式:CPU(中央处理器)和GPU(图形处理器).在现代iOS设备中,都有可以运行不同软件的可编程芯片,但是由于历史…
http://www.csdn.net/article/2014-06-05/2820089 摘要:MapReduce在实时查询和迭代计算上仍有较大的不足,目前,Spark由于其可伸缩.基于内存计算等特点,且可以直接读写Hadoop上任何格式的数据,逐渐成为大数据处理的新宠,腾讯分享了Spark的原理和应用案例. [编者按]MapReduce由于其设计上的约束只适合处理离线计算,在实时查询和迭代计算上仍有较大的不足,而随着业务的发展,业界对实时查询和迭代分析有更多的需求,单纯依靠MapReduc…
一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化,持久化的单位是partition.cache和persist都是懒执行的.必须有一个action类算子触发执行.checkpoint算子不仅能将RDD持久化到磁盘,还能切断RDD之间的依赖关系. 二.具体算子 1. cache 默认将RDD的数据持久化到内存中.cache是懒执行. chche (…
时间调前,调后 select billid,DATEADD(mm,2,billdate) from bi_Bill 注:用dateadd(/时间年/月/日,调前或后多少,字段) mm为月份,2为调前两天,billdate为数据库里面的字段…
1.使用mapPartitions算子提高性能 mapPartition的优点:使用普通的map操作,假设一个partition中有1万条数据,那么function就要被执行1万次,但是使用mapPartitions操作之后,function仅仅会被执行一次,显然性能得到了很大的提升,这个就没必要在多废话了. mapPartition的缺点:使用普通的map操作,调用一次function执行一条数据,不会出现内存不够使用的情况:但是使用mapPartitions操作,很显然,如果数据量太过于大的…
一 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 1.1数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢.比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时.这种情况很常见. 原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,观察异…