LSTM理解】的更多相关文章

简介 LSTM(Long short-term memory,长短期记忆)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失问题.以下先从RNN介绍. 简说RNN RNN(Recurrent Neural Network,循环神经网络)是一种处理序列数据的神经网络.下图是它的结构: RNN优点:它能处理序列数据,并且有记忆能力,能够利用上文信息. RNN缺点: 梯度消失:对于获取长距离依赖的效果不是很好(即如果上文信息离当前输入距离太远的话,理论上它是能够记得上文信息,但是事实上并不是…
简介 LSTM(Long short-term memory,长短期记忆)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失问题.以下先从RNN介绍. 简说RNN RNN(Recurrent Neural Network,循环神经网络)是一种处理序列数据的神经网络.下图是它的结构: 从上图可以看出,RNN循环获取输入序列,并保存上一次输入的计算结果,与当前输入进行计算后,将计算结果输出并保存当前的计算结果,这样不断循环输入并计算,即可获取上文信息. RNN内部网络如下图所示,从图中可以…
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM.BiLSTM等多个神经网络模型的的实现.这篇文章总结一下最近一段时间遇到的问题.处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚. Demo Site:  https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-…
下面的RNN,LSTM,GRU模型图来自这里 简单的综述 1. RNN 图1.1 标准RNN模型的结构 2. BiRNN 3. LSTM 图3.1 LSTM模型的结构 4. Clockwork RNN 5. Depth Gated RNN 6. Grid LSTM 7. DRAW 8. RLVM 9. GRU 图9.1 GRU模型的结构 10. NTM 11. QRNN 图11.1 f-pooling时候的QRNN结构图 图11.2 fo-pooling时候的QRNN结构图 图11.3 ifo-…
RNN及其变体框架  含RNN推导 LSTM理解 理解LSTM网络  算法细节理解及参考文献  …
小白一个,刚刚费了老大的劲完成一个练手项目--image caption,虽然跑通了,但是评估结果却惨不忍睹.于是贴上大神的作品,留待日后慢慢消化.顺便记录下自己踩坑的一些问题. 先膜拜下大神的作品. 本次项目采用的模型结构如下.一路输入信息是利用VGG16提取的图像特征,另一路输入信息是利用LSTM提取的单词串特征,输出是预测的下一个单词.即模型的功能是,在给定图像特征和caption前面若干个单词的情况下,能预测出caption的下一个单词:所以循环若干次后即可得到一句完整的caption.…
本文介绍了ICASSP2022 DNS Challenge第二名阿里和新加坡南阳理工大学的技术方案,该方案针对卷积循环网络对频率特征的提取高度受限于卷积编解码器(Convolutional Encoder-Decoder, CED)中卷积层有限的感受野的问题,将阿里达摩院之前的FSMN与发展自DCCRN/DCCRN的CRN with CCBAM结合.本文提出了一种频率递归卷积循环网络(frequency recurrence Convolutional Recurrent Network, FR…
递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这点,而且这似乎也是它的主要缺陷.比如,你想对电影中每个点发生的事件类型进行分类.目前还不清楚传统神经网络如何利用之前事件的推理来得出后来事件. 递归神经网络能够解决这一问题.这些网络中具有循环结构,能够使信息持续保存. 递归神经网络具有循环结构 在上图中,一组神经网络A,接收参数,输出,循环A可以使…
原文链接:http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 吴恩达版:http://www.ai-start.com/dl2017/html/lesson5-week1.html#header-n375 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用…
博文的翻译和实践: Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras 正文 一个强大而流行的循环神经网络(RNN)的变种是长短期模型网络(LSTM). 它使用广泛,因为它的架构克服了困扰着所有周期性的神经网络梯度消失和梯度爆炸的问题,允许创建非常大的.非常深的网络. 与其他周期性的神经网络一样,LSTM网络保持状态,在keras框架中实现这一点的细节可能会令人困惑. 在这篇文章中,您将会确切地了解…