Metropolis Hasting算法】的更多相关文章

Metropolis Hasting Algorithm: MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样.主要原理是构造了一个精妙的Markov链,使得该链的稳态 是你给定的概率密度.它的优点,不用多说,自然是能够对付数学形式复杂的概率密度.有人说,单维的MH算法配上Gibbs Sampler差点儿是“无敌”了. 今天试验的过程中发现,MH算法想用好也还不简单,里面的转移參数设定就不是非常好弄.即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,须要不同问…
本文主要译自 MCMC: The Metropolis Sampler 正如之前的文章讨论的,我们可以用一个马尔可夫链来对目标分布 \(p(x)\) 进行采样,通常情况下对于很多分布 \(p(x)\),我们无法直接进行采样.为了实现这样的目的,我们需要为马尔可夫链设计一个状态转移算子(transition operator),是的这个马尔可夫链的稳态分布与目标分布吻合.Metropolis 采样算法(更通常的是 Metropolis-Hastings 采样算法)采用简单的启发式方法实现了这样的状…
从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也没没有时间仔细看.趁目前比较清闲,把 machine learning 里面的 sampling methods 理一理,发现内容还真不少,有些知识本人也是一知半解,所以这篇博客不可…
除了精确推理之外,我们还有非精确推理的手段来对概率图单个变量的分布进行求解.在很多情况下,概率图无法简化成团树,或者简化成团树后单个团中随机变量数目较多,会导致团树标定的效率低下.以图像分割为例,如果每个像素的label都是随机变量,则图中会有30W个随机变量(30W像素的小型相机).且这30W个随机变量相互之间耦合严重(4邻接,多回环),采用团树算法无法高效的获得单个像素label的可能值.所以,在精确推理之外,我们使用非精确推理的手段对节点的概率分布进行估计. 1.Loopy 置信传播 BP…
蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策.然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后验概率进行积分等计算往往非常困…
本文主要译自:MCMC:The Metropolis-Hastings Sampler 上一篇文章中,我们讨论了Metropolis 采样算法是如何利用马尔可夫链从一个复杂的,或未归一化的目标概率分布进行采样的.Metropolis 算法首先在马尔可夫链中基于上一个个状态 \(x^{(t-1)}\) 推荐一个新的状态 \(x^*\),这个新状态是根部建议分布 \(q(x^*|x^{(t-1)})\) 进行采样得到的.算法基于目标分布函数在 \(x^*\) 上的取值接受或者拒绝 \(x^*\).…
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇式的人物.Diaconis14岁就成了一名魔术师,为了看懂数学家Feller的概率论著作,24岁时进入大学读书.他向<科学美国人>投稿介绍他的洗牌方法,在<科学美国人>上常年开设数学游戏专栏的著名数学科普作家马丁•加德纳给他写了推荐信去哈佛大学,当时哈佛的统计学家Mosteller 正…
本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例子: 1. Markov Chain (马尔科夫链) 2. Random Walk(随机游走) 3. MCMC具体方法: 3.1 M-H法 3.2 Gibbs采样 PS:本篇blog为ese机器学习短期班参考资料(20140516课程),课上讲详述. 下面三节分别就前面几点简要介绍基本概念,并附上代…
本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个样例: 1. Markov Chain (马尔科夫链) 2. Random Walk(随机游走) 3. MCMC详细方法: 3.1 M-H法 3.2 Gibbs採样 PS:本篇blog为ese机器学习短期班參考资料(20140516课程),课上讲详述. 以下三节分别就前面几点简要介绍基本概念,并附上代…
看了好多相关的知识,大致了解了一下马尔可夫链-蒙特卡罗采样理论,有必要记来下来. 蒙特卡罗积分:(来自:http://blog.csdn.net/itplus/article/details/19168937) 下面的写的很让人明白:好好理解一下,第一次感觉到积分与统计学的联系. 利用蒙特卡罗方法求积分的重点就是怎么如何采样指定的分布....简单的分布如均匀分布我们有方法可以采样,但是复复杂的分布呢?如高斯分布呢?你怎么办?? 这是就利用马尔可夫链的性质进行采样. 一些马尔可夫链的相关知识 在学…
Metropolis 算法又叫 Metropolis 抽样,是模拟退火算法的基础,在早期的科学计算中蒙特卡洛方法(Monte Carlo)是对大量原子在给定温度下的平衡态的随机模拟,当蒙特卡洛算法计算量偏大. 1953 年,Metropolis 提出重要性采样,即以概率来接受新状态,而不是使用完全确定的规则,称为 Metropolis 准则,可以显著减小计算量. 假设前一状态为 x(n),系统受到一定扰动,状态变为 x(n+1),相应地,系统能量由 E(n) 变为 E(n+1). 定义系统由 x…
1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书中章节名称为Optimization) 2. 随机搜索 对于优化,一本很有名的书是Stephen Boyd 的凸优化(Convex Optimization).但看过的人可能思维会受到一点限制.最简单.最基本的求最大/最小值的算法,除了直接求解,就是把所有的可能值枚举出来,然后求最大/最小就可以了,…
这段时间一直在看Metropolis Light Transport(简称mlt),现利用这篇博文把之前看资料已经coding上的一些体会记录下来. 1.Before MLT 在MLT算法被提出之前,最热的GI算法bidirectional path tracing虽然对比于basic path tracing已经有了效率上的明显提高,但是对于复杂场景的表现力仍显不足.那时候人们已经知道基于path的GI算法的效率关键在于找到有效路径的效率.先说有效路径是什么,简单地说就是从光源出发,在场景中反…
模拟退火算法的原理模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小.根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数.用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制…
这篇文章是之前写的智能算法(遗传算法(GA).粒子群算法(PSO))的补充.其实代码我老早之前就写完了,今天恰好重新翻到了,就拿出来给大家分享一下,也当是回顾与总结了. 首先介绍一下模拟退火算法(SA).模拟退火算法(simulated annealing,SA)算法最早是由Metropolis等人提出的.其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性.模拟退火算法是一种通用的优化算法,其物理退火过程由以下三部分组成: (1)加温过程 (2)等温过程 (3)冷却过程 其中加…
本文忽略了对于模拟退火的算法的理论讲解,读者可参考相关的博文或者其他相关资料,本文着重于算法的实现: /***************************************************************************** ** Copyright: NEW NEU laboratory ** File name: SA_工作指派问题 ** Description:模拟退火算法解决工作指派问题 ** Author: 1702--GCJ ** Version:…
MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性,然而这个这个函数非常之复杂,怎么去采样?这时,就可以借助MCMC的思想. 它与变分自编码不同在于:VAE是已知一些样本点,这些样本肯定是来自于同一分布,但是我们不知道这个分布函数的具体表达式,然而我们需要从这个分布中去采取新的样本,怎么采样,这时,就需要借助VAE的思想. 个人的一点总结,不知道是否正确,如果有不同的理解,希望指正批评! MCMC原理讲解 以下内容博客转自:https://w…
%SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题——Jason niu X = [16.4700 96.1000 16.4700 94.4400 20.0900 92.5400 22.3900 93.3700 25.2300 97.2400 22.0000 96.0500 20.4700 97.0200 17.2000 96.2900 16.3000 97.3800 14.0500 98.1200 16.5300 97.3800 21.5200 95.5900 19.4100…
一,简介 退火算法不言而喻,就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定,而温度有一个向低温区辐射降温的物理过程,当物质内能不再降低时候该物质原子态逐渐成为稳定有序态,这对我们从随机复杂问题中找出最优解有一定借鉴意义,将这个过程化为算法,具体参见其他资料. 二,计算方程 我们所要计算的方程是f(x) = (x - 2) * (x + 3) * (x + 8) * (x - 9),是一个一元四次方程,我们称为高次方程,当然这个函数的开口是向上的,那么在一个无限…
一.直接采样 直接采样的思想是,通过对均匀分布采样,实现对任意分布的采样.因为均匀分布采样好猜,我们想要的分布采样不好采,那就采取一定的策略通过简单采取求复杂采样. 假设y服从某项分布p(y),其累积分布函数CDF为h(y),有样本z~Uniform(0,1),我们令 z = h(y),即 y = h(z)^(-1),结果y即为对分布p(y)的采样. 直接采样的核心思想在与CDF以及逆变换的应用.在原分布p(y)中,如果某个区域[a, b]的分布较多,然后对应在CDF曲线中,[h(a), h(b…
(学习这部分内容大约需要1.5小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)是一种近似采样算法, 它通过定义稳态分布为 \(p\) 的马尔科夫链, 在目标分布 \(p\) 中进行采样. Metropolis-Hastings 是找到这样一条马尔科夫链的非常一般的方法: 选择一个提议分布(proposal distribution), 并通过随机接受或拒绝该提议来纠正偏差. 虽然其数学公式是非常一般化的, 但选择好的提议分布却是一门艺术. 预备知识…
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)      (3)Bisecting k-means(二分k均值算法)      (4)Gaussian Mixture Model (GMM)       基于RDD API的MLLib中,共有六种聚类方法:      (1)K-means      (2)Gaussian mixture     …
喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TSP)? TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间的距离都是确定的,现要求一旅行商从某城市出发必须经过每一个城市且只在一个城市逗留一次,最后回…
模拟退火的基本思想: (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解$S\prime $ (4) 计算增量$\Delta t\prime  = C\left( {S\prime } \right) - C\left( S \right)$,其中$C\left( S \right)$为评价函数 (5) 若$\Delta t\prime  < 0$则接受$S\prime $作为新的当前解,…
Simulate Anneal模拟退火算法,是一种用于得到最优解的随机化算法. 如果可以打一手漂亮的随机化搜索,也许当你面对一筹莫展的神仙题时就有一把趁手的兵器了. 这篇题解将教你什么?SA的基本思路,什么时候能用SA. 标题是浅谈,所以本篇博客参杂了些许个人简介,若有疑问或异议,欢迎提出指正. 我也很感谢你们给出的建议,它们真的能让我变好.变强. 那么我们进入本篇正题. 1. 什么是模拟退火: 模拟退火是一种在广大的搜索空间寻找最优解的随机化算法.我们看名字就明白,这个算法实在模拟物理中退火的…
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis等人于1953年提出.1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域.来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温…
采样方法(二)MCMC相关算法介绍及代码实现 2017-12-30 15:32:14 Dark_Scope 阅读数 10509更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/Dark_Scope/article/details/78937731 0.引子 书接前文,在采样方法(一)中我们讲到了拒绝采样.重要性采样一系列的蒙特卡洛采样方法,但这些方法在高维空间…
转载随笔,原贴地址:MCMC和Gibbs Sampling算法 本文是整理网上的几篇博客和论文所得出来的,所有的原文连接都在文末. 在科学研究中,如何生成服从某个概率分布的样本是一个重要的问题.如果样本维度很低,只有一两维,我们可以用反切法,拒绝采样和重要性采样等方法.但是对于高位样本,这些方法就不适用了.这时我们就可以使用一些“高档”的算法,比如Metropolis-Hasting算法和Gibbs Sampling算法. Metropolis-Hasting算法和Gibbs Sampling算…
1.模拟退火算法 模拟退火算法借鉴了统计物理学的思想,是一种简单.通用的启发式优化算法,并在理论上具有概率性全局优化性能,因而在科研和工程中得到了广泛的应用. 退火是金属从熔融状态缓慢冷却.最终达到能量最低的平衡态的过程.模拟退火算法基于优化问题求解过程与金属退火过程的相似性,以优化目标为能量函数,以解空间为状态空间,以随机扰动模拟粒子的热运动来求解优化问题([1] KIRKPATRICK,1988). 模拟退火算法结构简单,由温度更新函数.状态产生函数.状态接受函数和内循环.外循环终止准则构成…
1.最优化与线性规划 最优化问题的三要素是决策变量.目标函数和约束条件. 线性规划(Linear programming),是研究线性约束条件下线性目标函数的极值问题的优化方法,常用于解决利用现有的资源得到最优决策的问题. 简单的线性规划问题可以用 Lingo软件求解,Matlab.Python 中也有求解线性规划问题的库函数或求解器,很容易学习和使用,并不需要用模拟退火算法.但是,由一般线性规划问题所衍生的整数规划.混合规划.0/1规划.二次规划.非线性规划.组合优化问题,则并不是调用某个库函…